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Abstract. In 2022, the logic programming community celebrated the
milestone of 50 years of evolution of logic programming languages,
started in 1972 with the first version of Prolog. In this paper, we con-
sider how extensions of logic programming can be handled in the High-
Performance Logical Framework Maude.

1 Introduction

Last year, the logic programming community celebrated the milestone of 50 years
of evolution of logic programming languages, started in 1972 with the first ver-
sion of Prolog [54]. Logic programming distinguishes from other programming
paradigms such as traditional imperative programming by adding free (logical)
variables and search, paving the way for inference engines that are measured in
terms of inferences per second rather than calculations per second. Moreover,
logic programming distinguishes from other declarative paradigms such as func-
tional programming by using, again, free variables and search but also by using
term unification instead of term matching.

The paradigm of logic and functional programming (see [41,42,43,49] and ref-
erences therein) combines both functional programming and logic programming
in different ways. From the functional programming perspective, it borrows alge-
braic data types, advanced typing, evaluation strategies, and higher-order func-
tions among other features; allowing programmers to have nested expressions
and, thus, normalization strategies. From the logic programming perspective, it
borrows logical variables, computing with partial information, constraint solv-
ing, and nondeterministic search for solutions among other features; allowing
programmers to have search mechanisms with local and global control. Many
researchers in the functional logic programming area (see [71,38,19,62,45]) have
tried, since the eighties, to combine the best features of both paradigms into a
single language, Curry [44] being a distinguished instance, and many possibilities
have been explored (see [45,47] for a survey). Nowadays there is a remarkable
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body of programming languages and tools in the functional logic area as a result
of these efforts.

In [25,31], we showed how functional-logic programs written in Curry can be
transformed into the high-performance modelling and programming language
Maude [20,16] by relying on the advanced equational unification capabilities, for
any combination of associativity, commutativity and identity, and the distinc-
tion between equations and rules in Maude. In [20], we specified a simple logic
programming language in Maude illustrating various (logical) computation fea-
tures. In this paper, we consider how some extensions of logic programming, as
the ones discussed in [54,18], can be handled in Maude.

Modern multi-paradigm programming languages [48] have embarked on com-
bining different paradigms in a seamless way: functional programming, logic pro-
gramming, concurrent programming, and constraint programming. Curry [44]
offers most of these features but other logic and/or functional programming sys-
tems too, such as the Ciao Prolog [50] or even Maude [21,23]. Indeed, the Eqlog
programming language [36] developed by Joseph Goguen and José Meseguer in
the eighties was a first attempt to combine both equational programming with
logic programming. Eqlog unified equational programming and Horn-logic pro-
gramming into one paradigm. It was envisaged to embed order-sorted equational
logic and Horn logic without equality into a suitable Horn logic with equality
[37]. Indeed, in [23, Sec 8.1], a simple but fully executable interpreter of Eqlog
was provided, although the program transformations of [25,31] are more effec-
tive in general. Since the eighties, José Meseguer has been interested in including
logical features into Maude (see his paper [63] dedicated to Goguen’s 65th birth-
day) but most of the appropriate technology was missing and has been devel-
oped recently (see [65,67]). Many people strongly believe that Maude with logical
features would be an excellent choice in the near future for multi-paradigm pro-
gramming: equational programming, object-oriented programming, concurrent
programming, logic programming, execution strategies, symbolic computation,
and constraint solving; combined with reflection and a suite of many different
formal tools such as model checkers and theorem provers.

Many alternatives for multi-paradigm programming have attempted to ex-
tend a logic language with functional syntax (Boolean equations rather than just
predicates, nested expressions instead of functors) and unfold expressions into
flattened predicates with extra variables. The use of coroutines allows a finer
control over evaluated predicates in logic programming but may yield incom-
pleteness problems and an infinite search space in many situations [46]. Nar-
rowing is a generalization of term rewriting that allows free variables in terms
(as in logic programming) and replaces pattern matching by unification in or-
der to (non-deterministically) reduce these terms. Narrowing was originally in-
troduced for automated theorem proving [74], then used as a mechanism for
solving equational unification problems [35]. It became the de facto evaluation
mechanism for functional logic programming languages [7], and it was general-
ized from equational unification problems to solve the more general problem of
symbolic reachability [68] and, in a more modern perspective, of logical model
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checking in [32,12]. The narrowing mechanism has a number of important appli-
cations including automated proofs of termination [11], execution of functional
logic programming languages [7], program transformation [3], program debug-
ging [1,4], partial evaluation [5,6,2], verification of cryptographic protocols [68],
equational unification [51], and narrowing-based SMT solving [75,66], just to
mention a few.

The work on the Maude-NPA protocol crypto analyzer [27,26,39,9,8,10] is
the most impressive use of narrowing-based symbolic reachability analysis in
Maude to date and has served as inspiration to many other researchers, tools
and techniques, e.g. other crypto protocol analyzers such as Tamarin [61] and
AKISS [14].

In Section 2, we will recall some of the feature of the High-performance
Logical Framework Maude. In Section 3, we discuss some extensions of logic
programming and provide how relevant program verification examples published
in [18] can be easily modelled and verified in Maude. We conclude in Section 4
with some thoughts on future work.

2 Maude

Maude [20,16] is a high-level programming language and system that sup-
ports functional, concurrent, logic, and object-oriented computations. A Maude
rewrite theory R = (Σ, E , R) combines a set R of term rewrite rules, which
specify the concurrent transitions of a system, with an equational theory E that
specifies the algebraic datatypes of the system’s states. The equational theory
E is split into a set E of equations and a set B of axioms. The axioms B are
equalities representing algebraic laws such as associativity (A), commutativity
(C), and unit symbols (U). The equations E are implicitly oriented from left to
right as rewrite rules and operationally used as simplification rules modulo the
axioms B (see [64] for further details). The rewrite rules R are applied to terms
by matching1 modulo the equations E and the axioms B. When narrowing in-
stead of rewriting is performed, rewrite rules are applied by unification modulo
the equations E and the axioms B. Recently, it has been endowed with logical
features, such as equational unification and symbolic reachability [21,65,67,23].

2.1 Equational Unification

The most recent Maude 3.2.1 release [16] provides efficient, terminating and com-
plete unification procedures. The most basic is order-sorted B-unification, where
B is any combination of associativity and/or commutativity and/or unit element
axioms. Note that if a symbol is associative but not commutative, Maude’s algo-
rithms are optimized to favor many commonly occurring cases where typed A-
unification is finitary, and provide a finite set of solutions and an incompleteness

1 This is conceptually exact; but operationally, exploiting a property called coherence
[22], rules R can be applied modulo the axioms B only.
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warning outside such cases (see [24]). The most general version is order-sorted
E ∪B-unification in the user-definable infinite class of theories E ∪B satisfying
the finite variant property (FVP) [17,28].

Let us consider the following equational theory from [23] for the Booleans
(with self-explanatory, user-definable syntax):

fmod BOOL-FVP is protecting TRUTH-VALUE .

op _and_ : Bool Bool -> Bool [assoc comm] .

op _xor_ : Bool Bool -> Bool [assoc comm] .

op not_ : Bool -> Bool .

op _or_ : Bool Bool -> Bool .

op _<=>_ : Bool Bool -> Bool .

vars X Y Z W : Bool .

eq X and true = X [variant] .

eq X and false = false [variant] .

eq X and X = X [variant] .

eq X and X and Y = X and Y [variant] . *** AC extension

eq X xor false = X [variant] .

eq X xor X = false [variant] .

eq X xor X xor Y = Y [variant] . *** AC extension

eq not X = X xor true [variant] .

eq X or Y = (X and Y) xor X xor Y [variant] .

eq X <=> Y = true xor X xor Y [variant] .

endfm

The axioms B are the associativity-commutativity (AC) axioms for xor and and

(specified with the assoc comm attributes). The equations E are terminating and
confluent modulo B. Two equations are added to achieve strict B-coherence [64].
The remaining equations in E define or, not and <=> as definitional extensions.
The variant attribute declares that the equation will be used for folding variant
narrowing [28]. This is a narrowing strategy applying oriented equations modulo
axioms that is terminating and complete for equational theories that are FVP
and, even more, optimally terminating in the sense that no other narrowing
strategy could compute fewer variants and still be complete. Indeed, the theory
specified by the functional module BOOL-FVP is FVP; see [16] for further details
on how to check this property.

A complete, finite set of E ∪ B-unifiers can be computed with Maude’s
(filtered) variant unify command. For our BOOL-FVP example, it gives us a
Boolean satisfiability decision procedure. Such a procedure cannot compete with
mainstream SAT-solvers but illustrates with a simple example how unification
commands provide an off-the-shelf SAT solver (see [23]).

Maude> filtered variant unify (X or Y) <=> Z =? true .

rewrites: 3224 in 12765ms cpu (14776ms real) (252 rewrites/second)

Unifier 1

X --> #1:Bool xor #2:Bool

Y --> #1:Bool
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Z --> #2:Bool xor (#1:Bool and (#1:Bool xor #2:Bool))

No more unifiers.

Advisory: Filtering was complete.

Fresh, newly generated variables follow the form #1:Bool.
Let us consider another example from [66] defining Presburger arithmetic of

the natural numbers with addition and comparison that imports BOOL-FVP:

fmod NAT-FVP is protecting BOOL-FVP .

sorts Nat NzNat .

subsort NzNat < Nat . ---Non-zero naturals

op 0 : -> Nat [ctor] .

op 1 : -> NzNat [ctor] .

op _+_ : NzNat Nat -> NzNat [ctor assoc comm id: 0] .

op _+_ : Nat Nat -> Nat [ctor assoc comm id: 0] .

vars X Y : Nat . var Z : NzNat .

op _>_ : Nat Nat -> Bool .

eq X + Z > X = true [variant] .

eq X > X + Y = false [variant] .

endfm

The axioms B are the associativity, commutativity, and identity (ACU) axioms
for the addition, where 0 is the identity element. For example, the natural num-
ber 3 is written 1 + 1 + 1. The equations E defining comparison are terminating
and confluent modulo B. The theory specified by the functional module NAT-FVP
is also FVP. In this case, it gives us a Presburger arithmetic satisfiability de-
cision procedure. Again, such a procedure cannot compete with mainstream
SMT-solvers for Presburger arithmetic but illustrates with a simple example
how unification commands provide an off-the-shelf SMT solver (see [23]). Indeed,
fairly complex formulas can be proved, e.g. ∀X,Y : X +Y > Y ⇔ Y > 0 can be
represented as an unification problem (∃X,Y : X +Y > Y ⇔ Y > 0) =? false:

Maude> filtered variant unify (X + Y) > X <=> Y > 0 =? false .

rewrites: 10 in 1ms cpu (1ms real) (8726 rewrites/second)

No unifiers.

Advisory: Filtering was complete.

2.2 Symbolic Reachability

When the rewrite theory R is topmost, meaning that the rules R rewrite the
entire state, narrowing with rules R modulo the equations E is a complete sym-
bolic reachability analysis method for infinite-state systems [68]. That is, given
a term u with variables −→x , representing a typically infinite set of initial states,
and another term v with variables −→y (probably sharing some variables with
−→x ), representing a possibly infinite set of target states, narrowing can answer
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the question: can an instance of u reach an instance of v? That is, does the
formula ∃−→x ,−→y u →∗ v hold in R? Note that, if the complement of a system
invariant I can be symbolically described as the set of ground instances of terms
in a set {v1, . . . , vn} of pattern terms, then narrowing with rules R modulo the
equations E provides a semi-decision procedure for verifying whether the system
specified by R fails to satisfy I starting from an initial set of states specified by
u. Namely, I holds iff no instance of any vi can be reached from some instance of
u. Moreover, if the narrowing-based reachability graph is finite, then narrowing
provides a decision procedure for verifying invariants, as shown in the examples
below.

The vu-narrow command implements narrowing with R modulo E ∪ B by
performing E ∪ B-unification at each narrowing step. However, the number of
symbolic states that need to be explored can be infinite. This means that if
no solution exists for the narrowing search, Maude will search forever, so that
only depth-bounded searches will terminate. However, Maude implements some
form of tabling with the {fold} vu-narrow {filter,delay} command that
performs a powerful symbolic state space reduction by: (i) removing a newly
explored symbolic state v′ if it E ∪B-matches a previously explored state v and
replacing a transition with target v′ by transitions with target v; and (ii) using
minimal sets of E ∪B-unifiers for each narrowing step and for checking common
instances between a newly explored state and the target term (ensured by words
filter and delay). This can make the entire search space finite and allows full
verification of invariants for some infinite-state systems.

Consider the following Maude specification of Lamport’s bakery protocol
that extends the specification of [23] with extra variables in right-hand sides and
conditional2 rules. The narrowing attribute declares that the rule will be used
only for folding narrowing with rules modulo the whole equational theory.

mod BAKERY-EXTRAVAR is

pr NAT-FVP .

sorts LNat Nat? State WProcs Procs .

subsorts Nat LNat < Nat? . subsort WProcs < Procs .

op [_] : Nat -> LNat . *** number-locking operator

op < wait,_> : Nat -> WProcs .

op < crit,_> : Nat -> Procs .

op mt : -> WProcs . *** empty multiset

op __ : Procs Procs -> Procs [assoc comm id: mt] . *** union

op __ : WProcs WProcs -> WProcs [assoc comm id: mt] . *** union

op _|_|_ : Nat Nat? Procs -> State .

vars n m i j k : Nat . var x? : Nat? . var PS : Procs . var WPS : WProcs .

var z : NzNat .

crl [new]: m | n | PS => m + z | n | < wait,m > PS

if m > n [narrowing] .

2 Maude does not currently accept conditional equations or conditional rules for any
form of narrowing. However, the transformation of conditional rules into uncondi-
tional rules of [56] can be applied to this example.
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crl [enter]: m | i | < wait,j> PS => m | [j] | < crit,j> PS

if m > i and m > j and not (i > j) [narrowing] .

crl [leave]: m | [n] | < crit,n > PS => m | n + z | PS

if m > n + z [narrowing] .

crl [lost]: m | i | < wait,j > PS => m + z | i | < wait,m > PS

if (m > i) and (i > j) [narrowing] .

endm

The states of BAKERY-EXTRAVAR have the form “m | x? | PS” with m the ticket-
dispensing counter, x? the (possibly locked) counter to access the critical section,
and PS a multiset of processes either waiting or in the critical section. This
rewrite theory is an infinite state system in different ways: the rule labelled
[new] creates new processes, and the counters m and x? can grow unboundedly.
When a waiting process enters the critical section by applying the rule labelled
[enter], the second counter n is locked and written [n]. The locked process
is removed and the second counter is unlocked and incremented when the rule
labelled [leave] is applied.

This example differs from the one in [23] in the use of extra variables. First,
the general invariant that the ticket-dispensing counter must always be greater
than the counter to access the critical section is checked and preserved by all
the rules. Second, when creating new processes, the ticket-dispensing counter
can be increased in any amount instead of just one unit, thanks to the non-
zero variable z appearing only in the righthand side of the rule. Third, because
of such unbounded increment of the ticket-dispensing counter, the counter to
access the critical section is not sequential and, thus, the rule labelled [enter]

needs to check that the counter of a waiting process is greater or equal to the
counter to access the critical section; we also check the general invariant that it
is smaller than the current ticket-dispensing counter. Fourth, when removing a
completed critical process using the rule labelled [leave], the counter to access
the critical section can be increased in any amount instead of just one unit,
thanks to the non-zero variable z appearing only in the righthand side of the
rule, while ensuring the general invariant. Fifth, it is possible that a process
missed the critical section because of the unbounded increment of the counter
to access the critical section and we have added a new rule labelled [lost] that
takes a new ticket.

The key invariant is mutual exclusion. Note that the term “i | x? |

< crit, j > < crit, k > PS” describes all states in the complement of mu-
tual exclusion states. Without the fold option, narrowing does not terminate,
but with the following command we can verify that BAKERY-EXTRAVAR satisfies
mutual exclusion for the much more general infinite set of initial states with
waiting processes “m | n | WPS”. Note that this cannot be achieved by stan-
dard rewriting-based reachability analysis from an initial state such as “0 | 0

| mt” because of the use of extra variables in the righthand sides of the rules.

Maude> {fold} vu-narrow {delay, filter}

m | n | WPS =>* i | x? | < crit,j > < crit,k > PS .
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No solution.

rewrites: 145 in 78430ms cpu (86933ms real) (1 rewrites/second)

The finite folded narrowing space is displayed in Figure 1. The verified property
is very strong, since mutual exclusion is proved for an unbounded number of
processes.

m | n | WPS

[new]

uu
[lost]

��
[enter]

))
m+z | n | WPS < wait,m >

4E

""

m+z | n | WPS < wait,m >

4E

88

m | [j] | < crit,j > WPS’

[leave]

&&

[new]

uu

[lost]

uu

m+z | [j] | < crit,j > < wait,m > WPS’

4E

KK

m | n+z | WPS’

4E
uu

m+z | [j] | < crit,j > < wait,m > WPS’
4E

RR

Fig. 1: Folded Narrowing Space for BAKERY-EXTRAVAR

3 Extensions of Logic Programming in Maude

Logic programming has inspired many related areas and, as a result, several
different languages have created their own communities on extensions of logic
programming. Let us recall some of these extensions.

Strategies Both logic and functional paradigms consider evaluation strategies. In
the case of functional programming better performance can be achieved by either
using eager evaluation such as OCaml [69] and Maude [20] or lazy evaluation
such as Haskell [53]. In the case of Prolog, it provides a sequential, depth-first,
deterministic exploration of the proof tree generated by SLD resolution, thanks
to backtracking, selecting clauses in a top-down manner, and selecting predicates
in a left-to-right order.
Maude allows operator strategy annotations for rewriting evaluation of oriented
equations [58,59,40] and a versatile strategy rewriting language for rules [73,16].
In the case of narrowing, the folding variant narrowing [28] is a very specialized
strategy for oriented equations modulo axioms that it is neither eager nor lazy3.
It prioritizes simplification rewriting steps over narrowing steps; indeed it priori-
tizes narrowing steps with more general computed substitutions. This narrowing

3 Forms of lazy evaluation have been developed in [34,33,30,29] for Maude.
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strategy discards narrowing steps where the computed substitution is not nor-
malized. For narrowing with rules, there is no strategy narrowing language yet
as the one already developed for rewriting with rules, although folding, as shown
above, reduces dramatically the search space.

Tabling Tabling is a refinement of the SLD resolution incorporated to many
Prolog systems that consists on maintaining a table of subgoals that are invoked
during execution, along with their answers if they have been computed. If the
current subgoal is present in the table, its evaluation is not attempted and their
answers are reused. Tabled logic programs terminate in many more situations
than standard logic programs, although, from a theoretical perspective, both
compute the same answers.
We have shown in the previous section how tabling has been incorporated into
narrowing with equations. It is an essential feature for an equational theory being
FVP, and narrowing with rules, via folding narrowing with rules.

Coroutining Coroutining ensures that a predicate is selected only if it is fully
instantiated. Coroutining is a key element in current logic programming sys-
tems by improving the control the user has over the search tree. Logic programs
should be independent of the selection criteria in the SLD resolution but, from a
practical perspective, some evaluation order over the predicates may be desirable
in terms of efficiency, termination, or the intended answers.
In Maude, we have several features that can be intelligently exploited. Equations
applied for rewriting are not labelled with the variant attribute and are used
just for simplification before any other action is taken. Equations applied for
narrowing are labelled with the variant attribute and combined for simplifica-
tion with those without the variant attribute. Rules applied only for narrowing
are labelled with the narrowing attribute and are the only ones used by the
vu-narrow command. Rules without the narrowing attribute are only used by
rewriting-based commands such as rewrite, frewrite, and search.

Constraints When considering problems beyond syntactic unification of two
terms, constraints given in richer domains provide a very flexible programming
and solving language framework. Constraint Logic Programming (CLP) was pre-
sented in the landmark paper [52] parameterized by the constraint domain. The
key insight was to generalize syntactic term unification into constraint solving
over a specific semantic domain. In this way, traditional logic programming can
be understood as CLP (H) where H denotes the equalities over Herbrand terms.
The CLP framework was first instantiated as CLP (R) for linear equations and
inequations over real numbers using Gaussian elimination. For software verifica-
tion, Constrained Horn Clauses (CHCs) is more common than CLP, in the sense
that software verification problems can be achieved using CHC logic program-
ming techniques.
Maude has been extensively used for software verification, see [60,15]. Further-
more, rewriting with mainstream SMT solvers has been used for software verifi-
cation, see [72,13,70,55]. However, narrowing in Maude has not been a popular
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topic of interest for software verification. The two examples below motivate fur-
ther uses of narrowing for software verification by making use, as in Section 2.2,
of a property verification via not finding the complement of the property in
a finite-state narrowing-based state space generated using transition rules and
constraint solving via variant-based equational unification. However, we have
also developed in [57] a framework for narrowing-based symbolic reachability
combined with mainstream SMT solvers, which provides an alternative, comple-
mentary approach to the one presented here and which will be further developed
in the future. Note that rewriting-based reachability combined with mainstream
SMT solvers is already available in Maude, see [16].

3.1 Software Verification using Program Semantics

In [18], it is described how software verification is the encoding of a verifi-
cation problem in CHC form. For instance, the imperative program of Fig-
ure 2 is translated into a logic program and the Hoare triple {m ≥ 0}sum =
sum upto(m){sum ≥ m} is satisfied only if the corresponding logic program is
satisfiable; we omit such a logic program but it is available in [18].

int sum_upto(int x) {

int r = 0 ;

while (x > 0) {

r = r + x; x = x - 1; }

return r;

}

Fig. 2: Imperative program fragment

A simple imperative interpreter for this syntax can be defined in Maude as
follows using a continuation-style very similar to the K semantics [15]. Each
configuration of the interpreter has the form “Program | Memory” where the
memory is a set of bindings from variable names to natural numbers. Expression
evaluation consists in pushing and popping partially evaluated elements into the
program using the semicolon as a stacking operator. We omit sort information
and some operator definitions and show just the transitions associated to the
operational semantics. We import the previous NAT-FVP module but rename its
addition and comparison operators to avoid conflicts with the additions and
comparison operations of the new syntax.

mod CHC is protecting NAT-FVP * (op _+_ to _++_, op _>_ to _>>_) .

...

eq (nat V) ; P | M = P | (M (V -> 0)) . --- New Variable

eq (V = E) ; P | M = E ; (V = {}) ; P | M . --- Assignment

eq N ; (V = {}) ; P | M = P | (M (V -> N)) . --- Cont’d

eq V ; P | (M (V -> N)) = N ; P | (M (V -> N)) . --- Variable

eq (E1 > E2) ; P | M = E1 ; E2 ; > ; P | M . --- Comparison
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eq N ; E2 ; > ; P | M = E2 ; N ; > ; P | M . --- Cont’d

eq N2 ; N1 ; > ; P | M = (N1 >> N2) ; P | M . --- Cont’d

eq (E1 + E2) ; P | M = E1 ; E2 ; + ; P | M . --- Addition

eq N ; E2 ; + ; P | M = E2 ; N ; + ; P | M . --- Cont’d

eq N2 ; N1 ; + ; P | M = (N1 ++ N2) ; P | M . --- Cont’d

eq E - 1 ; P | M = E ; - ; P | M . --- Predecessor

eq N ; - ; P | M = pred(N) ; P | M . --- Cont’d

eq while E {B} ; P | M = E ; while E {B} ; P | M . --- While

rl true ; while E {B} ; P | M => B ; while E {B} ; P | M [narrowing] .

rl false ; while E {B} ; P | M => P | M [narrowing] .

endm

Note that we have defined only as narrowing rules the two alternatives associated
to the conditional expression of a loop. All the other transitions are defined as
equations without the variant attribute in order to reduce the folded narrowing
search space shown in Figure 3 below. This is safe under the assumption that
only logical variables over the natural domain will appear in the terms of a
vu-narrow command. This is related to rewriting with SMT in Maude, where
the boolean expression of the while loops would be expressed as a term sent
to an SMT solver for satisfiability but it is not comparable to the verification
performed below, since constraint solving rather than satisfiability is actually
being performed and a finite narrowing-based search graph is obtained.

The intended invariant here, as described above, is that the result of
the program is greater than the original argument. The imperative program
is simplified into the following initial configuration of the program seman-
tics while (x > 0) {r = r + x ; x = x - 1} | (x -> X ++ Z) (r -> R)

where X and R are logical variables of sort Nat but Z is a logical variable of
sort NzNat, since the Hoare triple assumed the argument was greater than or
equal to 0 and we are going to search for the complement of the invariant. Note
that the target pattern “skip | (x -> W) (r -> X)” contains a new logical
variable W but reuses the previous logical variable X in order to describe all the
states in the complement of the invariant, i.e. the original argument is X ++ Z

but the result is X.

Maude> {fold} vu-narrow {delay, filter}

while (x > 0) {r = r + x ; x = x - 1} | (x -> X ++ Z) (r -> R)

=>*

skip | (x -> W) (r -> X) .

No solution.

rewrites: 79 in 16ms cpu (19ms real) (4725 rewrites/second)

The finite folded narrowing space is displayed in Figure 3. Note that the root
node is the original source term but normalized with the equations. In contrast
to the CHC approach relying on logic programming, we are able to verify this
property without any artificial encoding, just in a very natural way.
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(X ++ Z) >> 0 ; ... | (r -> R ++ X ++ Z) (x -> X ++ Z)

false

++
true

��
(X’ ++ Z’) >> 0 ; ... | (r -> 1 ++ 1 ++ X’ ++ X’ ++ R’ ++ Z’ ++ Z’) (x -> X’ ++ Z’)

4E

33

skip | (x -> 0) (r -> R’)

Fig. 3: Folded Narrowing Space for CHC

3.2 Software Verification on Algebraic Data Types

In [18], it is also described how software verification beyond decidable fragments
accepted by mainstream SMT solvers can be translated into the encoding of a
verification problem in CHC form. For instance, the Tree-Processing program,
written in OCaml syntax, in Figure 4 is translated into a logic program and the
property

∀n, t : n ≥ 0⇒ min-leafdepth(left-drop(n, t)) + n) ≥ min-leafdepth(t) (1)

is satisfied only if the corresponding logic program is satisfiable; we omit such a
logic program but it is available in [18].

type tree = Leaf | Node of int * tree * tree ;;

let min x y = if x < y then x else y ;;

let rec min-leafdepth t = match t with

| Leaf -> 0

| Node(x,l,r) -> 1+min(min-leafdepth(l),min-leafdepth(r)) ;;

let rec left-drop n t = match t with

| Leaf -> Leaf

| Node(x,l,r) -> if n <= 0 then Node(x,l,r) else left-drop (n-1) l ;;

Fig. 4: OCaml program fragment

A simple functional interpreter for this syntax can be defined in Maude as
follows. There is no need for a general configuration of the interpreter and the
two functional operations are directly translated into Maude operators. More
sophisticated approaches are clearly possible but we choose the simplest one to
ease the presentation.

mod TREE is protecting NAT-FVP .

sort Tree .

op Leaf : -> Tree .

op Node : Nat Tree Tree -> Tree .

vars N M : Nat . vars T L R : Tree .

op minLD : Tree -> Nat .

eq minLD(Leaf) = 0 .

eq minLD(Node(N,L,R)) = 1 + min(minLD(L),minLD(R)) .
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rl minLD(Leaf) => 0 [narrowing] .

rl minLD(Node(N,L,R)) => 1 + min(minLD(L),minLD(R)) [narrowing] .

op leftDrop : Nat Tree -> Tree .

eq leftDrop(N,Leaf) = Leaf .

eq leftDrop(0,Node(M,L,R)) = Node(M,L,R) .

eq leftDrop(N + 1,Node(M,L,R)) = leftDrop(N,L) .

rl leftDrop(N,Leaf) => Leaf [narrowing] .

rl leftDrop(0,Node(M,L,R)) => Node(M,L,R) [narrowing] .

rl leftDrop(N + 1,Node(M,L,R)) => leftDrop(N,L) [narrowing] .

endm

Note that we have duplicated the narrowing rules as equations in order to col-
lapse terms that are semantically equivalent but also to reduce the folded nar-
rowing search space shown in Figure 5 below.

In this case, we do not have an invariant and, thus, we are not targeting the
complement of an invariant but we transform property (1) into an existential
expression targeting false, in order to prove that the universal theorem holds.

Maude> {fold} vu-narrow {delay, filter}

not (minLeafDepth(T) > (minLD(leftDrop(N,T)) + N)) =>* false .

No solution.

rewrites: 19 in 1ms cpu (1ms real) (12541 rewrites/second)

The finite folded narrowing space is displayed in Figure 5. Note that the root
node is the original source term but normalized with the equations. Again, in
contrast to the CHC approach relying on logic programming, we are able to
verify this property without any artificial encoding, just in a very natural way.

true xor minLD(T) > minLD(leftDrop(N,T)) + N

T 7→Leaf

��

N 7→0,T 7→Node(M,L,R)

++
N 7→N’ + 1,T7→Node(M,L,R)

''

true true xor minLD(T’) > 1 + minLD(leftDrop(1, T’))

4Evv

true xor minLD(T’) > N’ + minLD(leftDrop(N’, T’))

4E

xx

Fig. 5: Folded Narrowing Space for OCaml

4 Conclusions

As explained above, logic programs have been easily encoded into functional logic
languages. However, a more natural operational semantics approach is possible in
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Maude and, in [20], we specified a simple logic programming language illustrating
various (logical) computation features. In this paper, we have considered how
some extensions of logic programming, such as the ones discussed in [54,18], can
easily be handled in Maude.

Many logic programming features have not yet been addressed in Maude.
They seem very attractive topics for future research, including:

– Logic programming languages are well-known for efficient indexing. Maude
provides very efficient matching, unification, rewriting, and narrowing algo-
rithms but there is room for improvement.

– Exploring Or-Parallelism and And-parallelism. Parallel definitions of Prolog
have been extremely useful in practice and much work in this direction could
be done in Maude using meta-interpreters.

– Effective exploration mechanisms in Prolog have no equivalent symbolic fea-
ture in Maude, just the rewriting strategy language or the metalevel. A
narrowing strategy language would be very useful in the future.

– Negation as symbolic failure is a fundamental feature of logic programming
which, unfortunately, has not been very much studied in Maude.
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S.A., Rowe, P.D. (eds.) Protocols, Strands, and Logic - Essays Dedicated to Joshua
Guttman on the Occasion of his 66.66th Birthday. Lecture Notes in Computer Sci-
ence, vol. 13066, pp. 22–49. Springer (2021). https://doi.org/10.1007/978-3-030-
91631-2 2, https://doi.org/10.1007/978-3-030-91631-2_2

11. Arts, T., Zantema, H.: Termination of logic programs using semantic unification.
In: Proietti, M. (ed.) Logic Programming Synthesis and Transformation, 5th In-
ternational Workshop, LOPSTR’95, Utrecht, The Netherlands, September 20-22,
1995, Proceedings. Lecture Notes in Computer Science, vol. 1048, pp. 219–233.
Springer (1996)

12. Bae, K., Escobar, S., Meseguer, J.: Abstract logical model checking of infinite-state
systems using narrowing. In: van Raamsdonk, F. (ed.) 24th International Con-
ference on Rewriting Techniques and Applications, RTA 2013, June 24-26, 2013,
Eindhoven, The Netherlands. LIPIcs, vol. 21, pp. 81–96. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik (2013). https://doi.org/10.4230/LIPIcs.RTA.2013.81,
http://dx.doi.org/10.4230/LIPIcs.RTA.2013.81

https://doi.org/10.1007/978-3-319-63139-4_1
https://doi.org/10.1007/978-3-319-63139-4_1
https://doi.org/10.1016/j.jlamp.2019.100501
https://doi.org/10.1007/978-3-030-59013-0_12
https://doi.org/10.1007/978-3-030-65277-7_7
https://doi.org/10.1007/978-3-030-65277-7_7
https://doi.org/10.1007/978-3-030-91631-2_2
http://dx.doi.org/10.4230/LIPIcs.RTA.2013.81


16

13. Bae, K., Rocha, C.: Symbolic state space reduction with guarded terms
for rewriting modulo SMT. Sci. Comput. Program. 178, 20–42 (2019).
https://doi.org/10.1016/j.scico.2019.03.006, https://doi.org/10.1016/j.scico.
2019.03.006
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(eds.) Automated Reasoning - 11th International Joint Conference, IJCAR 2022,
Haifa, Israel, August 8-10, 2022, Proceedings. Lecture Notes in Computer Science,
vol. 13385, pp. 529–540. Springer (2022). https://doi.org/10.1007/978-3-031-10769-
6 31, https://doi.org/10.1007/978-3-031-10769-6_31

24. Eker, S.: Associative unification in maude. J. Log. Algebraic Methods Program.
126, 100747 (2022). https://doi.org/10.1016/j.jlamp.2021.100747, https://doi.

org/10.1016/j.jlamp.2021.100747

https://doi.org/10.1016/j.scico.2019.03.006
https://doi.org/10.1016/j.scico.2019.03.006
https://doi.org/10.1145/2926715
https://doi.org/10.1007/978-3-030-87348-6_1
https://doi.org/10.1007/978-3-030-87348-6_1
http://maude.cs.illinois.edu
http://maude.cs.illinois.edu
https://doi.org/10.1017/S1471068421000211
https://doi.org/10.1017/S1471068421000211
https://doi.org/10.1007/978-3-031-10769-6_31
https://doi.org/10.1016/j.jlamp.2021.100747
https://doi.org/10.1016/j.jlamp.2021.100747


17

25. Escobar, S.: Functional Logic Programming in Maude. In: Specification, Algebra,
and Software - Essays Dedicated to Kokichi Futatsugi (SAS 2014). Lecture Notes
in Computer Science, vol. 8373, pp. 315–336. Springer (2014)

26. Escobar, S., Kapur, D., Lynch, C., Meadows, C., Meseguer, J., Narendran, P.,
Sasse, R.: Protocol Analysis in Maude-NPA using Unification modulo Homomor-
phic Encryption. In: Proceedings of the 13th ACM SIGPLAN Conference on Prin-
ciples and Practice of Declarative Programming (PPDP 2011). pp. 65–76. Associ-
ation for Computing Machinery (2011)

27. Escobar, S., Meadows, C., Meseguer, J.: Maude-NPA: Cryptographic Protocol
Analysis Modulo Equational Properties. In: Foundations of Security Analysis and
Design V (FOSAD 2007/2008/2009 Tutorial Lectures). Lecture Notes in Computer
Science, vol. 5705, pp. 1–50. Springer (2009). https://doi.org/10.1007/978-3-642-
03829-7 1

28. Escobar, S., Sasse, R., Meseguer, J.: Folding Variant Narrowing and Optimal Vari-
ant Termination. The Journal of Logic and Algebraic Programming 81(7–8), 898–
928 (2012). https://doi.org/10.1016/j.jlap.2012.01.002

29. Escobar, S.: Refining weakly outermost-needed rewriting and narrowing. In: Pro-
ceedings of the 5th International ACM SIGPLAN Conference on Principles and
Practice of Declarative Programming, 27-29 August 2003, Uppsala, Sweden. pp.
113–123. ACM (2003). https://doi.org/10.1145/888251.888263, https://doi.org/
10.1145/888251.888263

30. Escobar, S.: Implementing natural rewriting and narrowing efficiently. In:
Kameyama, Y., Stuckey, P.J. (eds.) Functional and Logic Programming,
7th International Symposium, FLOPS 2004, Nara, Japan, April 7-9, 2004,
Proceedings. Lecture Notes in Computer Science, vol. 2998, pp. 147–162.
Springer (2004). https://doi.org/10.1007/978-3-540-24754-8 12, https://doi.

org/10.1007/978-3-540-24754-8_12

31. Escobar, S.: Multi-paradigm programming in maude. In: Rusu, V. (ed.) Rewrit-
ing Logic and Its Applications - 12th International Workshop, WRLA 2018, Held
as a Satellite Event of ETAPS, Thessaloniki, Greece, June 14-15, 2018, Pro-
ceedings. Lecture Notes in Computer Science, vol. 11152, pp. 26–44. Springer
(2018). https://doi.org/10.1007/978-3-319-99840-4 2, https://doi.org/10.1007/
978-3-319-99840-4_2

32. Escobar, S., Meseguer, J.: Symbolic model checking of infinite-state systems using
narrowing. In: Baader, F. (ed.) Term Rewriting and Applications, 18th Interna-
tional Conference, RTA 2007, Paris, France, June 26-28, 2007, Proceedings. Lecture
Notes in Computer Science, vol. 4533, pp. 153–168. Springer (2007)

33. Escobar, S., Meseguer, J., Thati, P.: Natural rewriting for general term rewriting
systems. In: Etalle, S. (ed.) Logic Based Program Synthesis and Transformation,
14th International Symposium, LOPSTR 2004, Verona, Italy, August 26-28, 2004,
Revised Selected Papers. Lecture Notes in Computer Science, vol. 3573, pp. 101–
116. Springer (2004). https://doi.org/10.1007/11506676 7, https://doi.org/10.
1007/11506676_7

34. Escobar, S., Meseguer, J., Thati, P.: Natural narrowing for general term
rewriting systems. In: Giesl, J. (ed.) Term Rewriting and Applications,
16th International Conference, RTA 2005, Nara, Japan, April 19-21, 2005,
Proceedings. Lecture Notes in Computer Science, vol. 3467, pp. 279–293.
Springer (2005). https://doi.org/10.1007/978-3-540-32033-3 21, https://doi.

org/10.1007/978-3-540-32033-3_21

https://doi.org/10.1145/888251.888263
https://doi.org/10.1145/888251.888263
https://doi.org/10.1007/978-3-540-24754-8_12
https://doi.org/10.1007/978-3-540-24754-8_12
https://doi.org/10.1007/978-3-319-99840-4_2
https://doi.org/10.1007/978-3-319-99840-4_2
https://doi.org/10.1007/11506676_7
https://doi.org/10.1007/11506676_7
https://doi.org/10.1007/978-3-540-32033-3_21
https://doi.org/10.1007/978-3-540-32033-3_21


18

35. Fay, M.: First Order Unification in an Equational Theory. In: Proceedings of the
4th International Conference on Automated Deduction (CADE 1979). pp. 161–167.
Academic Press, Inc. (1979)

36. Goguen, J.A., Meseguer, J.: Equality, Types, Modules, and (why not?) Generics
for Logic Programming. The Journal of Logic Programming 1(2), 179–210 (1984)

37. Goguen, J.A., Meseguer, J.: Unifying Functional, Object-Oriented and Relational
Programming with Logical Semantics. In: Agha, G., Wegner, P., Yonezawa, A.
(eds.) Research Directions in Object-Oriented Programming, pp. 417–478. The
MIT Press (1987)

38. Goguen, J., Meseguer, J.: Eqlog: Equality, types and generic modules for logic pro-
gramming. In: DeGroot, D., Lindstrom, G. (eds.) Logic Programming, Functions,
Relations and Equations, pp. 295–363. Prentice-Hall (1986)
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ICLP. Lecture Notes in Computer Science, vol. 4670, pp. 45–75. Springer (2007)

48. Hanus, M.: Multiparadigm languages. In: Gonzalez, T.F., Diaz-Herrera, J., Tucker,
A. (eds.) Computing Handbook, Third Edition: Computer Science and Software
Engineering, pp. 66: 1–17. CRC Press (2014)

49. Hanus, M.: From logic to functional logic programs. Theory Pract. Log. Pro-
gram. 22(4), 538–554 (2022). https://doi.org/10.1017/S1471068422000187, https:
//doi.org/10.1017/S1471068422000187

50. Hermenegildo, M.V., Bueno, F., Carro, M., López-Garćıa, P., Mera, E., Morales,
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