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Abstract. The grounding bottleneck is a longstanding issue of Answer-
Set Programming (ASP), a well-known Logic Programming formalism
widely used for declarative problem solving. Lazy grounding as realized
by the recent Alpha system avoids this grounding bottleneck but faces
new challenges that are genuine to lazy grounding. This article first gives
an overview of lazy-grounding ASP solving by Alpha and provides infor-
mation on how to obtain and use the system. It then presents research
issues raised by lazy-grounding and overviews those which have been
addressed already.

1 Introduction

Answer-Set Programming (ASP) [4, 19, 28, 34, 35] is a well-known Logic Pro-
gramming formalism, widely used for declarative problem solving in diverse ar-
eas, ranging from planning, optimization, and commonsense reasoning to expla-
nation finding. The success of ASP is rooted in efficient solvers, due to which
ASP is applied fruitfully in a broad range of applications, from NASA’s Space
Shuttle [33, 48], to planning in the automotive industry [32], configuration [24],
etc [9, 52]. Despite this success, ASP solving has always been hampered by the
grounding bottleneck, which is an inherent drawback of the traditional ground-
and-solve evaluation of ASP that is employed by many of the most prominent
ASP solvers till today. First, a non-ground (i.e., first-order) ASP program is
fully grounded upfront to obtain a variable-free (i.e., propositional) program. In
a second step, the answer sets of the grounded program are computed using effi-
cient, propositional solving techniques adapted or inspired from SAT solving [1,
29, 41]. As the grounded program may be exponentially larger than the origi-
nal ASP program, the ensuing memory blow-up renders the ground-and-solve
approach categorically inapplicable for entire classes of programs.



Lazy grounding avoids upfront grounding and the grounding bottleneck by in-
terleaving the solving and the grounding phases. While ground-and-solve systems
have to ground all rules that may fire in any state the solver possibly reaches,
in lazy grounding only those rules are grounded that may fire in the current
state of the solver. If the solver recognizes that some part of the search space
contains no answer sets, lazy-grounding can omit grounding the rules that only
fire in that part. There are several systems for lazy-grounding ASP solving avail-
able, namely GASP [49], ASPeRiX [38–40], Omiga [13, 57], and Alpha [58],
which are all based on the notion of a computation sequence [43]. Unfortunately,
lazy-grounding cannot be simply put on top of the traditional state-of-the-art
techniques for efficient ASP solving, since one of their core-assumptions, that all
relevant ground rules are known, does not apply to lazy-grounding. The latter
thus opens many issues and novel research questions, some of which have been
closed by transferring techniques from the ground-and-solve approach to the
lazy-grounding setting. In particular, Alpha is the first system to combine lazy-
grounding with efficient search techniques from traditional ground-and-solve sys-
tems, such as conflict-driven learning and watched-literals propagation. Although
its search performance does not yet match the best possible with ground-and-
solve systems, Alpha is a big improvement compared to other lazy-grounding
systems and offers the following features:

– Computation of answer sets without the need for upfront grounding, which
avoids the grounding bottleneck of ASP and thus allows to solve ASP pro-
grams where traditional solvers run out of memory;

– A combination of lazy-grounding with conflict-driven learning and other
techniques for efficient (propositional) ASP solving;

– First-order normalizations to evaluate aggregates with Alpha, while its core
works with normal rules;

– Non-ground justifications for atoms, to avoid a genuine problem of lazy
grounding where the search may get stuck if not all ground rules that po-
tentially can derive an atom are known;

– Heuristics specifically tailored for lazy grounding;
– An integration with the HEX framework;
– A free and open-source implementation in Java.

Overall, Alpha already strikes a good balance between efficient grounding
and solving, while there are several open problems with potential for future
research. The active development of Alpha is continuing and we would welcome
new users, feedback on the software, and collaboration on open issues.

In this article we review the basics underlying Alpha, present research ad-
vances to improve lazy-grounding ASP solving, and discuss open research ques-
tions. The remainder of this article is thus structured as follows. Section 2 shows
where to get and how to run Alpha, while Section 3 gives an overview of the
system and its components. Section 4 introduces research issues related to lazy
grounding that already have been addressed, whereas Section 5 presents ongoing
and open issues. Section 6 considers related work and, finally, Section 7 concludes
this article.



2 Obtaining and Running Alpha

The Alpha system and its source code are publicly available on GitHub.1 Alpha
is actively developed and new binary releases are made available in irregular
intervals. All releases can be downloaded in compiled form as Java Archive (JAR)
files. These files can be run on all major operating systems via the Java runtime
(version 8 or higher) by executing java -jar alpha-bundled.jar. Invoking
Alpha without any arguments like this will print an overview of arguments and
exit. Building the newest version from source is possible using the automated
build system Gradle2 and detailed instructions are available on GitHub.1

Example 1. Let encoding.lp be a problem encoding in ASP and inst43.lp

contain an instance, i.e., a number of facts. Then Alpha can be instructed to
search the first 5 answer sets as follows:

java -jar alpha-bundled.jar -n 5 -i encoding.lp -i inst43.lp

One can also specify parts of the input program directly from the command
line, which is useful for setting parameters like domain size or bounds of an ASP
program.

Example 2. Assume the following ASP program to compute Fibonacci numbers
up to a given number is given in a file fib.lp.

fib(0,0). fib(1,1).

fib(N,F) :- fib(N1,F1), fib(N2,F2), N1=N-1, N2=N-2, F = F1+F2,

N=0..U, upto(U).

The command line to start Alpha and compute Fibonacci numbers up to 22 is:

java -jar alpha-bundled.jar -i fib.lp -str "upto(22)."

The input language currently accepted by Alpha is a subset of the ASP-
Core-2 input language [11] including function symbols and interval terms. Since
the core of Alpha works with normal rules, we employ normalizations to trans-
form programs using richer syntax into normal rules. At the time of writing, a
growing list of supported constructs includes: choice rules without bounds, sum
and count aggregates with lower bounds, and arithmetic terms in comparison
relations. Full support for ASP-Core-2 is planned and ongoing. As usual in ASP,
rules must be safe, i.e., every variable of a rule must also occur in its positive
body.

Comments and suggestions, as well as contributions via GitHub are very
much encouraged and welcomed.

3 Overview of the Alpha System

Alpha follows the notion of ASP computation for lazy-grounding and combines
it with the traditional techniques for efficient ASP evaluation, where a dedicated

1 https://github.com/alpha-asp/alpha
2 https://gradle.org/
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Fig. 1. The lazy-grounding ASP system Alpha.

solving component employs SAT-inspired techniques to find answer sets of a
set of ground nogoods and another component produces ground nogoods from
the input ASP program. Different from traditional ASP solving, however, these
components interact in a cycle and the algorithms in the solving component are
aware of the fact that they see only a part of the full grounding of the input
program.

Figure 1 gives an overview of the Alpha system and its components. There
are two major components: the Grounder and the Solver. The Grounder first
parses and normalizes the input program and then grounds it lazily. The Solver
uses techniques for efficient ASP solving, conflict-driven learning, watched-literals
propagation, and heuristics as used by state-of-the-art ASP systems, but cus-
tomized for lazy grounding [58]. At startup, the Grounder derives ground rules
that are applicable under the given input facts, turns them into nogoods (i.e.,
constraints that must be satisfied) and hands the latter on to the Solver. The
Solver in turn employs a CDCL-style algorithm to derive (or extend) a partial
assignment, which is then given to the Grounder to obtain further applicable
ground rules, whose nogood representation is again given to the Solver.

4 Research Topics Addressed

Since 2016, when work on Alpha started, we have encountered a number of
research issues and we have achieved significant progress on multiple fronts that
we summarize below.

Efficient Propagation. A key issue for ASP solving is propagation in CDCL-
based search; as this is frequently executed, much effort has been spent to come



up with an efficient solution. The Alpha system uses three truth values (must-
be-true in addition to true and false) and therefore implements a generalization
of the well-known two-watched literals (2WL) scheme commonly employed in
SAT and ASP solving, which we call the three-watched literals scheme [42]. The
latter introduces notions of weakly unit nogoods (propagating false or must-
be-true) and strongly unit nogoods (which must have a designated head literal
for propagating any truth value). Here, propagation from must-be-true to true
always occurs by the head of a nogood, which requires a third watched literal.
The solver maintains a watch structure for every atom, which points to the
nogoods where the respective atom is being watched. This watch structure then
is used for propagation in computation towards a least fixpoint.

Aggregate Rewriting. Recently, the ASP-Core-2 support in Alpha broadened to
include threshold conditions on the minimum, count, and sum of terms via the
powerful and highly expressive language construct of aggregates. In appreciation
of the integral role of aggregates in practice and research [53, 2, 23], Alpha de-
livered monotone count and sum aggregate support to the lazy-grounding ASP
realm [7, 8]. The approach instantiates a novel framework of lazy normalization
in translating aggregates to efficient first-order normal-rule encodings. The ap-
proach overcomes key challenges posed by the lazy grounding of aggregates: it
hides the complexity of aggregates from the core of the solver, which already
faces the tremendous challenge and complexity of both grounding and solving.
Moreover, efficient lazy grounding precludes upfront counting and ordering of
predicate instances. Yet, usual normalization depends crucially on both abili-
ties [6]. This dilemma motivated the innovation of a novel language primitive
that exposes a lazily determined order of atoms and enables asymptotically more
concise normalizations than previously known on the first-order level [50].

Justifications. Whenever Alpha arrives in a situation where a true atom, say
p, is unjustified (in the terminology from above, this means that p is must-
be-true but not true) and no further choices or propagations are possible, the
basic Alpha algorithm resorts to chronological backtracking. This turned out
to be problematic in several applications; to avoid this, we devised a method
that analyses why p is not justified and subsequently learns a new clause that
intuitively states that whenever p is true, the discovered reason for p being
unjustified should be invalidated [5]. Formally this analysis builds on the recently
introduced theory of justifications [14]. In practice, our algorithm — inspired by
partial evaluation techniques [37] — performs a top-down analysis of the logic
program starting from p to find all literals that (directly or indirectly) blocked
p from being justified, either by falsifying a rule body of a rule known to the
solver that could contribute to a justification of p or by blocking a rule from
being grounded. Preliminary experiments are promising and show that up to
exponential speed-ups can be gained and that on previously existing benchmarks,
the justification analysis eliminates a need for addition of redundant constraints.



Search Heuristics. Search heuristics steer solvers through the search space and
may shorten the search by a large amount. Alpha takes ideas from domain-
independent search heuristics like VSIDS [47] and BerkMin [36], which were
originally developed for SAT but are also successfully employed by ASP solvers
(such as clasp [31] and wasp [1]). These heuristics take into account how often
and how recently a propositional variable contributed to a conflict.

A direct application of BerkMin or VSIDS to lazy-grounding systems like
Alpha is problematic because their solving algorithms are quite different from
those in ground-and-solve systems. A major difference is that not all ground
rules, and consequently not all ground atoms, are known to a lazy-grounding
solver at any time. A further difference is that while a traditional ASP solver can
choose any atom to guess on, Alpha only guesses on atoms representing bodies
of rules that almost fire in the sense that the positive body is true already and
the negative body is not falsified. Therefore, for Alpha a set of novel domain-
independent heuristics has been developed [56]. First benchmarks are promising
but also indicate the need for further study.

Integration with HEX. The hex-formalism extends ASP by allowing a bidi-
rectional exchange between programs and external computation sources, which
are interfaced via so-called external atoms [18]. For instance, an external atom
&onlineWeather [loc](X) may query an online weather service for the weather
report for all locations in the extension of the loc predicate. In practice, ex-
ternal atoms are realized by C++ or Python plug-ins in an API-style fashion,
and the formalism has been applied to a wide range of areas ranging from Se-
mantic Web applications to route planning [20]. A longstanding issue regarding
hex-evaluation has been the grounding of programs containing nonmonotonic
external atoms that introduce new constants by so-called value invention as such
atoms need to be evaluated under exponentially many inputs during grounding.
This makes the grounding for hex even more challenging than for ordinary ASP.

Alpha enabled the integration of grounding and solving of hex-programs
such that new output constants of external atoms can be generated on-the-fly
during solving [21]. For this, Alpha has been integrated as a backend-solver
into the dlvhex system, which resulted in a novel algorithm for evaluating hex-
programs based on lazy grounding. Using Alpha solved the issue with respect
to grounding nonmonotonic external atoms and for grounding-intense programs,
a clear advantage of the Alpha-based algorithm could be shown in practice.

5 Ongoing and Future Work

The development of Alpha is ongoing and researchers from multiple universities
and the industry are collaborating to further improve the state of lazy-grounding
ASP solving. We present some of the currently ongoing work related to Alpha
below.

Grounding Strategies. Alpha was equipped with state-of-the art heuristics suc-
cessfully employed by other ASP solvers, namely MOMs [51] for initialization



of heuristic scores and VSIDS [47] for their dynamic modification. Both are
implemented in a similar fashion as in clasp [31]. However, the performance
improvement by those heuristics was much smaller than expected, because lazy
grounding provides a too narrow view of the search space for such heuristics to
perform adequately. This is a novel challenge for ASP solving, which traditional
ground-and-solve ASP solvers did not have to face.

So far Alpha runs a very restrictive grounding strategy in order to save max-
imum space, which results in non-optimal search performance as state-of-the-art
search heuristics are left mostly blind because they only consider the grounded
information. Thus we investigated more permissive lazy-grounding strategies
that ground more than what is absolutely neccessary. They produce ground rules
earlier, which informs search procedures better about the problem at hand. For
more details see the upcoming paper [55].

Domain-Specific Heuristics. A major advance in solving industrial configuration
problems with ASP can be achieved with domain-specific heuristics (cf. [16, 26,
30]), which allow to use heuristics that are designed specifically for one given ap-
plication domain. Given, e.g., a bin-packing problem, a domain-specific heuristic
for the solver could be to pick the biggest item not yet placed and put it in a
fitting bin with the least space remaining (i.e., a best-fit decreasing heuristic).

In [54], a novel semantics for heuristic directives in ASP is presented that
allows declarative specification of domain-specific heuristics where default nega-
tion inside heuristic conditions holds for false and currently unassigned atoms.
This allows for a natural and declarative formalisation of many domain-specific
heuristics, e.g., in a bin-packing encoding to refer to items not yet placed or the
total weight of items already placed in the partial assignment. The implementa-
tion of such heuristics in Alpha is currently ongoing.

Partial Evaluation. Traditional ground-and-solve ASP systems evaluate the def-
inite part of the given input program already in the grounding phase in order
to reduce the instance of the subsequent solving phase. In Alpha there is on-
going work to realize partial evaluation in a similar way, based on the part of
the input that can be stratified [3] and which does not depend on any choices
to be made by the solver. For this, Alpha analyses the dependency graph of
the input program on a predicate level, identifies strongly connected components
(SCCs), and then evaluates the acyclic part that does not depend on any cycles.
This approach is not as general as, e.g. the one in DLV [22] which considers
dependency on ground rules; however, it enables a subsequent search strategy
based on SCCs similar to ASPeRiX.

Future Work. A medium-term goal for Alpha is to support the full ASP-Core-2
input language, which includes weak constraints, optimization, and disjunction.
A further such goal is to transfer all major techniques for efficient answer-set
solving, like learned clause deletion, rapid restarts, etc., to the lazy-grounding
setting. For many of them, lazy-grounding raises novel research questions and
issues that do not exist if the full grounding is available. They pose completely



new challenges and open avenues for novel solving techniques that make use of
the first-order representation of the program. We will continue to investigate
these avenues and invite the community to join our efforts.

6 Related Work

Alpha is the latest in a line of lazy-grounding ASP solvers being based on the
notion of a computation sequence [43]. GASP [49] and ASPeRiX [39, 40, 38]
were the first lazy-grounding ASP solvers that implemented this notion. Given
a (partial) interpretation, finding a ground instance of a non-ground rule, i.e.,
grounding the rule lazily, is a task that is well-known to be NP-complete. For
this reason, lazy grounding inside GASP was encoded as a constraint problem,
while ASPeRiX used a semi-naive grounding approach. The later Omiga solver
[13, 57] used a RETE network [25] to speed-up this task but otherwise followed
the idea of a computation sequence quite closely. As noted in [38], however, semi-
naive grounding seems to be sufficiently fast for lazy-grounding ASP solving.

Computation sequences have also been implemented on top of special hard-
ware, in particular graphics cards to make use of their massive parallelization
[17]. This approach, however, uses no lazy grounding but the traditional full
upfront grounding.

Another approach to avoid grounding is based on a top-down query-driven
method to evaluate normal logic programs in a way similar to Prolog and with
negation as failure under the stable model semantics [44]. Galliwasp [45] is the
propositional stepping stone for the s(ASP) system [46], which implements this
query-driven ASP evaluation. Similar to Alpha, it does not require a finite
grounding, but the s(ASP) prototype, in contrast, is not designed to be compet-
itive in terms of speed and no benchmark results for search performance beyond
trivial problem instances have been reported.

Goal-driven lazy grounding is also realized in the Lazy-MX [12] system, which
achieves efficient solving performance for its language of FO(ID) that essentially
corresponds to the generate-define-test fragment of ASP [15].

Another way to avoid the grounding bottleneck of ASP is to outsource
difficult-to-ground parts of a problem specification. Recent applications with
Clingo [27] represent parts of a problem in an extra theory and employ the
ASP modulo theories approach to combine the outsourced theory reasoning with
the parts specified in ASP. This is akin to SAT modulo theories (SMT). The ob-
vious drawback of such an approach, however, is that the problem now has to
be specified in two distinct formalisms and for solving, these formalisms must
be combined again in a suitable manner.

7 Conclusion

We have presented the Alpha system for answer-set solving, which avoids the
grounding bottleneck using a lazy-grounding approach. While on programs whose
full upfront grounding easily fits into memory the solving performance of Alpha



is not yet on par with the best performance offered by traditional ground-and-
solve ASP systems, Alpha offers competitive solving performance on programs
where grounding is demanding, because it implements the most important tech-
niques for efficient ASP solving already. By that, Alpha makes ASP solving
feasible for entirely new classes of programs and new application domains from
industry.

The system is ready to be used and ongoing development aims at supporting
the full ASP-Core-2 input language as well as improved solving performance.
Alpha and its source code are freely available on GitHub.3 We are happy to
receive bug reports and would very much welcome potential future contributors
and collaborators.
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