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Abstract

The inherent complexity of parallel computing makes development, resource monitor-
ing, and debugging for parallel constraint-solving-based applications difficult. This paper
presents SMTS, a framework for parallelizing sequential constraint solving algorithms and
running them in distributed computing environments. The design (i) is based on a gen-
eral parallelization technique that supports recursively combining algorithm portfolios and
divide-and-conquer with the exchange of learned information, (ii) provides monitoring by
visually inspecting the parallel execution steps, and (iii) supports interactive guidance of
the algorithm through a web interface. We report positive experiences on instantiating the
framework for one SMT solver and one model checker based on IC3, debugging parallel
executions, and visualizing solving, structure, and learned clauses of SMT instances. A
more detailed presentation of this work is published in LPAR 2018.

1 Introduction

Constraints expressed as logical formulas are widely used for modelling systems in formal veri-
fication. Solving such formulas is a high-complexity and in general undecidable problem. This
intrinsic difficulty limits various approaches to face complex real-world instances. Algorithm
parallelization helps overcoming this limitation by exploiting parallel hardware architectures
or distributed computing clusters. However, constraint solving techniques differ considerably
between various applications, and often each needs a tailored parallelization procedure. An
important challenge in constraint solving is therefore the design of parallel techniques specific
enough to scale to high degrees of parallelism, while being general enough to be extendible by
domain-specialists to a wide range of different applications.

We present the tool SMT Service (SMTS): a framework designed to scale up constraint
solving based on the algorithms T-DPLL [21] and IC3 [4]. We show that SMTS provides func-
tionalities general enough to parallelize both SMT solving and infinite-state model checking.
Furthermore, SMTS provides an interactive graphical user interface (GUI). The framework
supports running constraint solvers in distributed computing clusters exploiting hundreds of
CPUs. SMTS is based on the parallelization tree formalism [10], a parallelization approach
relying on common aspects of constraint solving algorithms, making SMTS suitable for par-
allelizing existing sequential solvers from many different domains. To achieve parallelization
easily, SMTS provides an API specifically designed to relieve developers from the burden of
correctly handling concurrency and protocol details.

We prove that SMTS is general enough to parallelize both SMT using the T-DPLL solver
OpenSMT2 [8], and infinite-state model checking using the IC3 solver Z3 [3, 16]. In particular,
the three high-level elements present in most efficient T-DPLL and IC3 solvers that SMTS
exploits in order to improve solving performance are: the use of heuristic assumptions for
dividing the search-space (see e.g. [20] for SMT, and [16] for IC3); learning lemmas from the
logical formula [19, 7]; and the use of restarts to help the solver escape from local optima of the
heuristic [15].
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The non-deterministic behaviour caused by the asynchronous parallel execution in a dis-
tributed computing cluster can make identifying correctness and performance problems an
overwhelming task. To help understanding SMTS parallel executions, a web-based graphi-
cal user interface allows the user to inspect at a high level the executions both in real time
and by browsing their history. In addition, the graphical user interface allows to interactively
guide problem solving and to manually control the cluster resource usage. To the best of our
knowledge there are no other tools supporting these features.

Related work. This work is based on [18], which we extend here with a comparison between
SMTS and the sequential model checker Sally [13]. The parallelization tree formalism was
initially proposed in [12], and adapted to SMT in [10, 17, 11]. The seminal paper on the
model-checking algorithm IC3 [4] already provides experimental evidence on the efficiency of
parallelization. Parallelization of IC3 is further investigated in [6], and by the authors in [16]
in the context of the parallelization tree formalism. A web service for browsing several runs of
verification instances is presented in [2]. We follow the same ease of use approach by providing
a web service, but we visualize the execution of one verification or constraint solving run.
Visualization of parallel executions of constraint logic programs is studied in [5]. Similarly
to SMTS, the tool allows inspecting the execution at different time points, however without
using the general parallelization tree formalism. Finally, our tool contributes to visualizing the
structure of constraint problems and the executions of related, sequential search algorithms. In
this domain we want to acknowledge two works: [22] provides various ways to visualize DPLL
SAT solving, and [14] presents a graphical interface offering views on the underlying problem
structure and the solving process for answer set programming.

2 Background

The parallelization tree formalism [10] is a general framework to allow different parallel ap-
proaches for constraint solving to be combined with the aim of exploiting each others’ strengths.
The formalism supports recursively combining partitioning (often referred to as divide-and-
conquer in the literature), and algorithm portfolios. These are commonly used in combination
with sharing of learned information. We have observed analytically for T-DPLL [11] and in

Figure 1: Example parallelization trees. The squares are p-nodes, triangles are d-nodes, and
the pentagons are solvers. From left to right the trees correspond to portfolio, partitioning,
repeated partitioning, and iterative partitioning.
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practical experiments for both T-DPLL [17] and IC3 [16] that when used alone, both partition-
ing and algorithm portfolios have their own shortcomings and one often seems to perform well
exactly when the other performs badly. The parallelization tree is a hybrid approach capable
of exploiting the strengths of each parallel technique in cases where it is not known in advance
which technique works best.

The parallelization tree contains two types of nodes: division nodes (d-nodes) having the role
of dividing the instance using partitioning, and portfolio nodes (p-nodes) in charge of keeping
track of a portfolio of solvers. The root of the tree is a p-node, and the node types alternate
when traversing the tree from root downwards. Each p-node is associated with an instance
and a set of solvers. The root node contains the input instance. Nodes are labeled unknown
initially, and satisfiable or unsatisfiable during solving based on the following rules. A p-node is
satisfiable if and only if either the associated instance is proven satisfiable, or any of its d-node
children is satisfiable, and unsatisfiable if and only if either the associated instance is proven
unsatisfiable, or any of its d-node children is unsatisfiable. A d-node is satisfiable if at least one
of its p-node children is satisfiable, and unsatisfiable if all its p-node children are unsatisfiable.

Some example trees are given in Fig.1. In particular, from left to right the trees represent
simple portfolio, simple partitioning, i.e. partitioning in a single way the root instance, re-
peated partitioning, i.e. partitioning in multiple ways the root instance, and finally an iterative
partitioning, i.e. non-root instances are partitioned.

2.1 Parallel T-DPLL and IC3 with SMTS

This paper reports how SMTS was adapted for two algorithms: the T-DPLL algorithm for
SMT solving [21], and the IC3 model checking algorithm [4].

SMT solving algorithms based on T-DPLL combine a propositional SAT solver with solvers
for fragments of first-order logic. In practice the combination is done by lazily instantiating the
first-order axioms on-demand as learned clauses to the SAT solver.

The IC3 algorithm proves the unreachability of error states of infinite-state transition sys-
tems using induction. The proofs are built by inductive strengthening that is guided using
counter-examples for the unreachability blocked by either the transition function or ultimately
the initial state. Each strengthening is expressed as a reachability lemma that blocks a part of
the search space that is unreachable by taking at most a given number of transition steps. The
IC3 algorithm we use in this work relies on an SMT solver while building the proof.

The parallelization tree framework is proven versatile enough for parallelizing both SMT and
IC3. However, instantiating parallelization trees on a given domain requires domain-specific
knowledge, and in particular the concrete definitions for partitioning, portfolio building, and
lemma sharing. In the following we provide an overview of the SMT and IC3 instantiations,
and refer the reader to [17] and [16], respectively, for further details.

Details on the T-DPLL instantiation. Given an SMT instance Φ and an arbitrary n ≥ 2,
the partitioning algorithm returns a set of constraints c1, . . . , cn such that its disjunction

∨n
i ci

is a tautology. The partitions Φ1, . . . ,Φn, are of the form Φi := Φ ∧ ci. Lemma sharing is
done by exchanging clauses learnt during the search. Such clauses are implied by Φ and can
be used to refine the search performed by other solvers. Portfolio is achieved by randomizing
the heuristics of the underlying SAT solver, and, when possible, the theory-specific decision
procedures.
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Figure 2: SMTS framework overview. Solid lines represent TCP/IP connections, while dashed
lines represent disk I/O.

Details on IC3 instantiation. IC3 partitioning [16] is based on the computation of the
disjunction of one formula representing all the states leading to an error state in one transition
step. Lemma sharing is done by exchanging the reachability lemmas. Portfolio is achieved by
randomizing the way counter-examples are selected for blocking, and by randomizing the search
heuristics of the underlying SMT solver.

3 SMTS Architecture

The SMTS architecture (Fig. 2) consists of several components representing processes running
on different computing nodes and communicating using TCP/IP. The manager receives tasks
from the user through the control socket, which can be accessed either through the terminal
interface, or through the GUI. A configuration file provides both general settings (e.g. paral-
lelization tree and network configurations), and solver-specific parameters that will be forwarded
together with each p-node solving task. The Parallelization tree keeps track of the mapping
between solvers and p-nodes by distributing the solvers among all unknown p-nodes. Events
such as solver failures and additions occurring during the execution are managed soundly by
the server.

The API layer each solver implements makes the underlying algorithms transparent to the
rest of the framework. The lemma database stores and provides lemmas to the solvers, filtering
lemmas based on different heuristics. The history of events related to the solving task is stored
in the event database which can be inspected using the GUI either live or once the solving has
terminated.

3.1 Graphical User Interface

The SMTS GUI shows the parallelization tree and allows the user to trace back the status
of the tree in any moment in the past, visualize resource allocation, interact with the current
parallel solving, and inspect the history of events and statistics of past and current solving
tasks. A screenshot of the SMTS GUI is given in Fig. 3, showing the parallelization tree and
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Figure 3: A screenshot of SMTS GUI showing the parallelization tree of an SMT instance.

Figure 4: Two QF LRA CNF visualization examples from SMTS GUI. Nodes represent theory
atoms, edges are variable incidences, and green edges represent learned binary clauses.

the list of solving events from an SMT instance. If the manager is currently running, the GUI
is connected to the control socket, enabling the user to interact with the current parallel solving
task. There are three options available to the user. A double click on a p-node currently being
solved triggers partitioning of such node; the number of solvers working on a given node can
be changed; and the solving timeout can be updated.

SMTS also supports SMT-specific visualization by showing the CNF structure of the in-
stance of a selected d-node together with the learned binary clauses. In SMT, Boolean atoms
might contain several free theory constants. Therefore Boolean atoms not appearing in the
same clause can relate at the first-order level by having free theory constants in common. As
a result, SMT instances have a much more compact propositional structure compared to SAT
instances, allowing us to scale to instances of practical relevance. We use the VIG [22] repre-
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sentation of the CNF structure of the SMT instance as the basis. The VIG is a graph where
every node represent a literal, and an edge connecting two nodes represents that the connected
literals appear together in at least one clause of the CNF structure. While often the CNF
structure of an SMT instance is relatively compact, the learned clauses are usually too many to
be visualized this way. As a compromise, we support the visualization of learned binary clauses,
that is, clauses consisting of exactly two Boolean atoms. Besides the VIG representation of the
CNF structure, the GUI is enhanced with SMT-specific visualization features. In particular,
we allow user to highlight nodes that contain a specific free theory constant. Two examples
of CNF visualization are given in Fig. 4. The clauses learned by the SMT solver consisting of
two Boolean literals are called binary clauses. The instance view shows them as green edges
between two nodes.

4 Experimental Evaluations

In this section we report experimental results for both parallel SMT and IC3 using SMTS
in a distributed environment. Further analysis on the techniques is available in [17] and [16],
respectively. For all our experiments we use an Intel-based cluster of 24 nodes, each with 64GB
of memory and 20 cores. The nodes are connected with Intel Infiniband 40Gbps network.

Experiments on T-DPLL. Figure 5 evaluates T-DPLL parallel techniques over the QF UF
and QF LRA benchmarks using the OpenSMT2 engine, with different SMTS configurations.
The partitioning tree instantiations p1, p2 and p8 are respectively pure portfolio and partition-
ing in 2 and 8 partitions (the latter two configurations are represented by the second tree in
Fig. 1). The flag CS indicates that clause sharing is enabled. In general we see that SMTS
provides speed-up on these instances, and that clause sharing is effective. Interestingly clause
sharing performs badly with partitioning in two, and often partitioning is not as efficient as one
would think. Further research results and discussion about the ambiguous behaviour of SMT
partitioning with respect to solving performance is provided in [9].
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Figure 5: Comparing different parallel configurations of SMTS using the engine OpenSMT2
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Figure 6: Comparing different parallel configurations of SMTS using the engine Z3.

Table 1: Lemma sharing statistics for SMTS using Z3.

portfolio partitioning

∞ k ∗ ∞ k ∗
time 0.38% 1.12% 1.18% 1.16% 4.01% 3.86%
#lemmas 405 299 295 286 289 269

Experiments on IC3. Figure 6 shows results on parallel IC3 obtained with SMTS using
the engine Z3. The different configurations reported are sequential run, and a combination of
two parallelization tree approaches portfolio and partitioning, each with and without lemma
sharing. The instances are taken from the software model checking competition Linux device
drivers category [1]. The IC3 API implementation of SMTS supports different lemma sharing
modes: none, ∞, k, and ∗. None is simply sharing no lemmas, ∞ is sharing only invariants
proven inductive, k is sharing only invariants proven true up to a given finite k transition
steps, and ∗ is sharing both types of lemmas. For more details see [16]. We notice that the
partitioning approaches are particularly effective, and interestingly, k suffices for a very good
speedup. However, from the difference between the virtual best solver against the best single
strategy we notice that some of the approaches are orthogonal. Table 1 reports the average
time spent in network delays due to lemma sharing with respect to the total solving time, and
the average amount of lemmas exchanged. We note that the number of shared lemmas in IC3
is relatively low compared to what one would expect for clauses on T-DPLL, and that the
overhead is mostly insignificant, suggesting that the implementation of SMTS is efficient for
these numbers. Figure 7 shows an experiment solving the transition systems (TS) benchmarks
set from the constrained Horn clauses competition 2019. Sally [13] is a solver designed for TS
benchmarks whereas Z3 is a general IC3 solver; in fact, the former performs much better than
the latter. Interestingly, SMTS using Z3 with 60 CPUs solved more than three fourth of the
benchmarks Sally solved and sequential Z3 did not. Most importantly, to achieve this goal,
the expensive design and implementation of a solver specific for the TS benchmarks was not
necessarily.
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Figure 7: Comparing Z3, SMTS using Z3 with portfolio+∞, and Sally.

Graphical User Interface Effectiveness. The SMTS GUI helped us to find a bug in
the manager code. An analysis of a parallel SMT execution revealed that, under certain
circumstances, some solvers were assigned to nodes having an already solved ancestor. By
construction if the satisfiability of an ancestor in the parallelization tree is known, also the
satisfiability of all the children of that ancestor is know. Therefore this behaviour witnesses a
performance bug that was due to the concurrency involved in the message exchange between
all the solvers and the manager.

5 Conclusion

Although parallelization is known to speed up solving, the complexity of implementation and
the heterogeneity of different algorithms are still blocking the wide-scale adoption. The frame-
work presented in this paper aims at simplifying the study of parallel techniques based on the
general parallelization tree formalism. The parallel features are readily exploitable by different
solvers through the API and a user-friendly graphical interface helps development and research.
Our personal positive experiences with SMTS gives us confidence that the tool will be both
interesting and valuable to the community in general. In the future we plan to parallelize the
Sally algorithm PDKIND [13] using SMTS and support deleting lemmas in addition to shar-
ing them. We are also looking into different heuristics for lemma sharing, such as those based
on learning shapes of computed first-order logic interpolants.
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