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SAT solvers’ performance has drastically improved during the past 20 years, thanks to
the inventions of techniques from conflict-driven clause learning, backjumping, variable and
value selection heuristics, to random restarts [2, 4, 21]. SAT has become the backbone of
many software systems, including specification languages for model generation and checking
[8, 16, 17, 20], planning [19, 28], program analysis and test pattern generation [29], answer set
programming [5, 11], and solvers for general constraint satisfaction problems (CSPs) [4, 14, 18,
27, 30, 31, 32].

In order to fully exploit the power of SAT solvers, a compiler is needed to Booleanize
constraints as formulas in the conjunctive normal form (CNF) or some other acceptable form.
The encodings of constraints have big impact on the runtime of SAT solvers [3]. Several
encodings of domain variables have been proposed, including sparse encoding [12, 32], order
encoding [6, 22, 31], and log encoding [15, 10]. The sparse and order encodings can easily
blow up the code size, and the log encoding is perceived to be a poor choice, despite its
compactness, due to its failure to maintain arc consistency, even for binary constraints. This
dilemma of the eager approach has led to the emergence of the lazy approach, as represented
by SMT solvers that use integer arithmetic as a theory [1, 7, 24] and lazy clause generation
(LCG) solvers that combine SAT and constraint propagation [9, 26]. Both the eager and lazy
approaches have strengths and weaknesses [25]. For problems that require frequent checking
of arithmetic constraints the lazy approach may not be competitive due to the overhead, even
when checking is done incrementally and in a priori manner. From an engineering perspective,
the eager approach also has its merit, just like the separation of computer hardware and
language compilers is beneficial.

We have developed an optimizing compiler in Picat [34], called PicatSAT, which adopts
the sign-and-magnitude log-encoding for domain variables. For a domain with the maximum
absolute value n, it uses log2(n) Boolean variables to encode the domain. If the domain contains
both negative and positive values, then another Boolean variable is employed to encode the
sign. Each combination of values of the Boolean variables represents a valuation for the domain
variable. The addition constraint is encoded as logic adders, and the multiplication constraint
is encoded as logic adders using the shift-and-add algorithm.

Log-encoding for constraints resembles the binary representation of numbers used in com-
puter hardware, and many algorithms and optimization opportunities have been exploited by
hardware design systems. PicatSAT adopts some optimizations from CP systems, language
compilers, and hardware design systems for encoding arithmetic constraints into compact and
efficient SAT code: it preprocesses constraints before compilation in order to remove no-good
values from the domains of variables whenever possible; it eliminates common subexpressions
so that no primitive constraint is duplicated; it uses a logic optimizer to generate optimized
code for adders. PicatSAT also incorporates an optimization, named equivalence reasoning,
[33] which identifies values or equivalence relationships of Boolean variables in primitive arith-
metic constraints at compile time. These optimizations significantly improve the quality of the
generated code.

PicatSAT is provided in Picat as a solver module, named sat, which follows the common
constraint interface. Other solver modules that implement the same constraint interface in
Picat include cp, smt, and mip. The following gives a Picat program for the Sudoku problem:
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import sat.

main =>

Board = {{2,_,_,6,7,_,_,_,_},

{_,_,6,_,_,_,2,_,1},

{4,_,_,_,_,_,8,_,_},

{5,_,_,_,_,9,3,_,_},

{_,3,_,_,_,_,_,5,_},

{_,_,2,8,_,_,_,_,7},

{_,_,1,_,_,_,_,_,4},

{7,_,8,_,_,_,6,_,_},

{_,_,_,_,5,3,_,_,8}},

sudoku(Board),

foreach(Row in Board) writeln(Row) end.

sudoku(Board) =>

N = Board.len,

Vars = Board.vars(),

Vars :: 1..N,

foreach (Row in Board) all_different(Row) end,

foreach (J in 1..N)

all_different([Board[I,J] : I in 1..N])

end,

M = round(sqrt(N)),

foreach (I in 1..M..N-M, J in 1..M..N-M)

all_different([Board[I+K,J+L] : K in 0..M-1, L in 0..M-1])

end,

solve(Vars).

The first line imports the sat module, which defines the used built-ins by this program, in-
cluding the operator ::, the global constraint all different, and the solve predicate for
labeling variables. For a given board, the sudoku predicate retrieves the length of the board
(Board.len), extracts the variables from the board (Board.vars()), generates the constraints,
and calls solve(Vars) to label the variables. The first foreach loop ensures that each row of
Board has different values. The second foreach loop ensures that each column of Board has
different values. The list comprehension [Board[I,J] : I in 1..N] returns the Jth column
of Board as a list. Let M be the size of the sub-squares (M = round(sqrt(N))). The third
foreach loop ensures that each of the N M×M squares contains different values. As demon-
strated by this example, Picat’s language constructs such as functions, arrays, loops, and list
comprehensions make Picat as powerful as other modeling languages, such as OPL [13] and
MiniZinc [23], for CSPs. The common constraint interface that Picat provides for the solver
modules allows seamless switching from one solver to another.

PicatSAT, which is implemented in Picat, has over 10,000 lines of code, excluding comments.
PicatSAT competed in the MiniZinc Challenge (http://www.minizinc.org/challenge.html) and
the XCSP competition (http://www.xcsp.org/) in 2018. In both competitions, PicatSAT used
Lingeling (version 587f, http://fmv.jku.at/lingeling/) as the underlying SAT solver. PicatSAT
won the first place in the COP track and the third place in the CSP track in the 2018 XCSP
competition, and won the silver medal in the free-search class and the bronze medal in the
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parallel-search class in the 2018 MiniZinc Challenge. The competition results demonstrate the
competitiveness of the implementation.

In addition to the advancement of SAT solvers and the optimizations implemented in the
compiler, the competition results of PicatSAT are also attributed to Picat, the implementation
language. The log encoding is arguably more difficult to implement than the sparse and order
encodings. Picat’s features, such as attributed variables, unification, pattern-matching rules,
and loops, are all put into good use in the implementation. There are hundreds of optimization
rules, and they can be described easily as pattern-matching rules in Picat. Logic programming
has been proven to be suitable for language processing in general, and for compiler writing in
particular; PicatSAT has provided another testament.
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