
About negation-as-failure and the informal semantics of
Logic Programming

Marc Deneckera,∗, Miroslaw Truszczynskib, Joost Vennekensc

aDepartment of Computer Science
KU Leuven

3001 Leuven, Belgium
bDepartment of Computer Science

University of Kentucky
Lexington, KY 40506-0633, USA

cDepartment of Computer Science, KU Leuven
Campus De Nayer

2860 Sint-Katelijne-Waver, Belgium

History and motivation. In its origin, logic programming was understood as the Horn
fragment of first order logic (FO) augmented with a procedural interpretation induced
by SLD inference (Kowalski, 1974). But already in 1975, the Prolog system developed
in Marseille was extended with the negation-as-failure (NAF) inference rule, to derive
negative literals not A (Roussel, 1975). The problem was that this inference rule is
unsound with respect to the then accepted declarative interpretation of programs as
Horn theories, as such theories do not entail negative literals ¬A. On the other hand,
negation-as-failure had many useful applications in which the ”unsound” conclusions
were intuitively justified. This was the start of an extensive research program to study
this phenomenon and to formalize it in a formal semantics of logic programming under
which NAF inference would be sound. This led to the main formal semantics of LP
that we know today by van Emden and Kowalski (1976), Reiter (1977), Clark (1978),
Apt et al. (1988), Gelfond and Lifschitz (1988), and Van Gelder et al. (1991).

Despite this work, misunderstanding, controversies and disagreements remain about
the informal semantics of logic programs and the meaning of its connectives. Two main
and conflicting views on logic programming have emerged: the view of a logic program
as a definition, and the view of a logic program as an autoepistemic theory. The for-
mer was proposed first by Keith Clark in his work on the completion semantics (Clark,
1978). After the Clark’s completion semantics was criticized for its problems in the
case of recursive programs (Harel, 1980), it was refined to the stratified semantics for
the class of stratified programs (Apt et al., 1988), and to the well-founded semantics for
arbitrary normal logic programs (Van Gelder et al., 1991). The autoepistemic view, re-
sulting in the semantics of stable models, was presented first by Michael Gelfond and

∗Corresponding author
Email addresses: marc.denecker@cs.kuleuven.be (Marc Denecker), mirek@cs.uky.edu

(Miroslaw Truszczynski), joost.vennekens@cs.kuleuven.be (Joost Vennekens)

Preprint submitted to Elsevier July 19, 2017

Vladimir Lifschitz (1988). It was developed on the basis of the autoepistemic logic
by Moore (1984), who proposed it as a formal logic for expressing the knowledge of
rational reflecting agents.

Ideas closely related to NAF inference appeared independently in the context of
database query answering in Ray Reiter’s work on the Closed World Assumption (Re-
iter, 1977). In 1980, Reiter generalized the Closed World Assumption in his default
logic (Reiter, 1980), which he proposed as a formalism to study comonsense reason-
ing. Several years later, default logic inspired a novel semantics of logic programs pro-
posed by Bidoit and Froidevaux (1987, 1991). This semantics was eventually shown
to coincide with the stable model semantics (Marek and Truszczyński, 1989; Bidoit
and Froidevaux, 1991). Since default logic is equivalent to the autoepistemic logic
of Moore (Denecker et al., 2011), this line of research can be taken as an alternative
embodiment of the autoepistemic view.

As for the informal semantics of the negation not in logic programs, many view
it as a non-standard form of negation, different from classical negation. Gelfond and
Lifschitz (1988) interpret not A as “A is not known” as a semantical way to reflect
the fact that the NAF inference rule infers not A if A is not provable. While this is a
compelling argument, it is easy to see that it is not a binding one. Assume that a logic
has the property that its theories have complete knowledge on some class of formulas
α (i.e., a theory T either entails α or entails ¬α). If such logic possesses a sound and
complete inference mechanism to infer T |= α, then a (finite) failure of this engine to
prove α ensures that T |= ¬α. Thus, in all such cases, the negation-as-failure rule is a
sound inference rule to infer classically negated formulas. Thus, to explain negation-
as-failure, one can either interpret the symbol as an epistemic operator “I do not know
that . . . ”, or one can keep the standard objective interpretation of negation and explain
logic programming as a logic that expresses complete knowledge.

As an aside, we note that in the early papers on the semantics of logic programming,
including those by Clark (1978) and Apt et al. (1988), the term “negation-as-failure”
refers exclusively to the non-standard negation-as-failure inference rule and not to the
negation connective. In those papers, negation is interpreted as the classical negation.
However, in the autoepistemic view of Gelfond and Lifschitz (1988) the negation can-
not be treated as the classical one anymore. To stress that, researchers following the
autoepistemic view started to use the term negation-as-failure also to refer to the not

connective in programs.
Much of the controversy about the meaning of negation in logic programs stems

from the coexistence of these two conflicting views. Perhaps one of the most confusing
aspects herein is that at least to some extent, the same formal semantics can account
for both views. Specifically, there is nothing in the mathematical definition of, say, the
stable model semantics for logic programs that forces one to adopt either one view or
the other. This means that in principle, two programmers may use the same program
to compute the same output, and yet may have a completely different idea about what
this program means! In order to properly address the question of negation-as-failure, it
is therefore necessary to first discuss the informal semantics of a logic program.

Informal semantics. In declarative logics, formulas express information about the ap-
plication domain. The role of the informal semantics theory of the logic is to specify

2

what this information is. Following Frege (1918), the information represented by a
formula is a thought. To express this thought in a form accessible to others, we have to
resort to natural language. And so, the informal semantics of a logic will be presented
by a precisely defined translation of formulas into natural language. Let us illustrate
this in the context of classical logic. For instance, consider the formula Φ:

∀x : Human(x)⇔ Man(x) ∨Woman(x)

The informal semantics of such an expression in the application domain depends
on the meaning of its non-logical symbols in this application domain. We call this
the intended interpretation I of the symbols and specify it as parametrized natural
language sentences:

• I(Human) = “#1 is a human”

• I(Man) = “#1 is a man”

• I(Woman) = “#1 is a woman”

Given such an intended interpretation I for a vocabulary Σ of symbols, the translation
to natural language providing the informal semantics FOI of FO expressions over Σ
can now be defined inductively as specified in Table 1.

Φ FOI(Φ)

x x (where x is a variable)

P (t1, . . . , tn)
I(P)〈FOI(t1), . . . ,FOI(tn)〉 (i.e., the declara-
tive sentence I(P) with its parameters instanti-
ated to FOI(t1), . . . ,FOI(tn))

ϕ ∨ ψ FOI(ϕ) or FOI(ψ) (or both)

¬ϕ it is not the case that FOI(ϕ)
(i.e., FOI(ϕ) is false)

ϕ⇔ ψ FOI(ϕ) if and only if FOI(ψ)

∀x ϕ for all x in the universe of discourse, FOI(ϕ)

.

Table 1: The informal semantics of FO formulas.

Aplying this definition to our formula Φ, the informal semantics FOI(Φ) of Φ is
given by the following sentence:

For all x in the universe of discourse, x is a human if and only if x is a
man or x is a woman (or both).

Assume that we take a different intended interpretation I ′, this time in the domain of
mathematics, where Human is interpreted as “#1 is an element of setA” and similarly

3

Man and Woman stand for sets B and C, respectively. Now, the informal semantics
FOI′(ϕ) of Φ is a mathematical statement, here given with the use of the standard
notational shortcuts of mathematics:

For all x in the universe of discourse, x ∈ A if and only if x ∈ B or x ∈ C
(or, equivalently, A = B ∪ C).

For both application domains, the translation yields precise, extensional statements
about their objective state of affairs. They are of the sort one finds in mathematical and
scientific texts.

FO’s theory of informal semantics also provides the interpretation of the formal
semantical concepts such as the relation A |= ϕ of satisfiability between a Σ-structure
A and a Σ-formula ϕ, where Σ stands for some fixed vocabulary. Namely, under an
intended interpretation I of Σ, a Σ-structure is interpreted as an abstract representation
of a state of affairs of the application domain. That is, an intended interpretation I
specifies an abstraction function from states of affairs of the application domain to Σ-
structures. Given a Σ-structure A and a Σ-formula ϕ, A |= ϕ informally means that
FOI(ϕ) is true in the state of affairs abstracted by A (under I).

The theory of informal semantics of FO can be viewed as a precise falsifiable hy-
pothesis about the forms of information (the “thoughts”) expressible in FO. Indeed, the
formal and informal semantics should match each other. That is, if a structure A is an
abstraction of a state of affairs of an application domain, then it must be that A |= ϕ
holds if and only if FOI(ϕ) is true in that state of affairs. This, of course, can never
be proved since the informal semantics, despite its linguistic precision, is not mathe-
matical. Nevertheless, the hypothesis can be subject to experiments and is in principle
falsifiable. A possible experiment here could consist of a choice of a vocabulary Σ
with an intended interpretation I, a Σ-theory T and a Σ-structure A. The experiment
would falsify the theory of informal semantics if A |= T and FOI(T) would not be
considered by human reasoners to be true in the states of affairs that abstract to A un-
der I. Or, conversely, if it holds that A 6|= T while FOI(T) would be considered by
human reasoners to be true in all such states of affairs. That such mismatches have not
occurred corroborates the theory of informal semantics of FO.

The definitional informal semantics of logic programming. We now review the infor-
mal semantics of logic programming cast in the style of the discussion above. We
start with the definitional informal semantics corresponding to the view of programs as
definitions. While there are no “official” linguistic rules on how to write an informal
definition in a mathematical or scientific text, some conventions exist. Simple defini-
tions often take the form of “if” or “if and only if” statements. More complex cases are
inductive or recursive definitions, which are frequently represented as a set of informal
rules, possibly with an induction order. When written according to these linguistic con-
ventions, a definition has a precise and objective meaning to us. Consider an intended
interpretation I for a vocabulary Σ, and a logic program Π in this vocabulary, with
predicates {P1, . . . , Pn}. Assume also that Π = {A1 ← ϕ1, . . . , Am ← ϕm}, where
ϕi is a conjunction of literals A and not A (with the conjunction connective repre-
sented by ‘,’). Finally, assume that the free variables of the rule Ai ← ϕi, 1 ≤ i ≤ m,

4

are xi1, . . . , x
i
ni

. We define the following translation OBI(Π) of Π into natural lan-
guage.

Relations P I1 , . . . , P
I
n are the relations defined by the following (simulta-

neous) induction:

− for all x11, . . . , x
1
n1

in the universe, FOI(A1) if FOI(ϕ1)
. . .

− for all xm1 , . . . , x
1
nm

in the universe, FOI(Am) if FOI(ϕm)

For completeness, to obtain a full account of the informal semantics of a logic program,
an extra axiom is needed that expresses that the universe of discourse corresponds to
the Herbrand universe. We will ignore this.

The proposition OBI(Π) is a statement that follows the linguistic conventions used
to express inductive definitions. If Π is not recursive, the phrase “by the following
simultaneous induction” should be dropped; what remains then is a definition by ex-
haustive enumeration, in which each rule represents one case. This translation makes
use of the natural language connective “if” for the rule operator←. When this word is
used in the context of a case of an (inductive) definition, it is a definitional conditional.
It has a precise and unambiguous meaning that differs from other conditionals such as
material or strict implication. This is the “non-standard” connective in the language of
logic programs under the definitional view. However, as implied be the use of FOI(·)
when interpreting the bodies of rules, not is interpreted as the standard objective nega-
tion, as in FO! Furthermore, nothing changes to the informal semantics of structures
(abstractions of states of affairs) and to the satisfaction relation.

Thus, we now have a proposal for an informal semantics of logic programs. The
question then is for what programs Π is OBI(Π) a sensible informal definition, and
what formal semantics formalizes this interpretation. Inductive definability was the
core concern of the development of the stratified semantics (Apt et al., 1988) and it
is clear that (locally) stratified logic programs can be interpreted as inductive defi-
nitions. Expressing inductive definitions was also underlying the development of the
well-founded semantics (Van Gelder et al., 1991). The links between this semantics and
inductive definitions were recently investigated in detail by Denecker and Vennekens
(2014). The punch-line is that logic programming under the well-founded semantics
is a paraconsistent logic for expressing monotone inductive definitions, definitions by
induction over a well-founded order, and the generalization of the two, called iterated
inductive definitions. Logic programs with a two-valued well-founded model express
mathematically correct definitions while programs with a three-valued well-founded
model express a definition containing definitional paradoxes. In this view, negation-as-
failure is actually classical negation. Below is an example.

Example 1. The application domain is a simplified access control domain with a set of
agents. One of them owns a file and has access to it. Any agent may delegate or block
access to another agent. These delegations and blocks only take effect if the issuing
agent has access. An agent has access if there is a path of delegations starting from the
owner and ending with the agent such that no agent on the path is blocked. Consider
the following program Π.

5

Delegates(A,B).
. . .
Blocks(C,D).
. . .
Access(Owner).
Access(x)← Access(y),Delegates(y, x), not EffectivelyBlocked(y).
EffectivelyBlocked(x)← Access(z),Blocks(z, x).

Under the obvious intended interpretation I, the program expresses delegations
and blocks by definition through exhaustive enumeration, and it expresses access and
effective blocks through a mutually recursive definition over negation. The program is
not locally stratified, not even when there are no Block facts. The negation is as in
FO, the standard objective negation. There is no central reflecting epistemic agent in
this application domain.

Depending on the definitions of Delegates and Blocks , the program illustrates sev-
eral types of definitions and definitional paradoxes. If there are no Blocks atoms, the
definition collapses to the standard monotone inductive definition of reachability from
Owner . If there is a hierarchy amongst agents with the owner on top such that agents
delegate only to agents at the same or at a lower level of the hierachy, and block agents
at lower levels, the definition is a fine iterated inductive definition. Beyond that, there
may or may not be definitional paradoxes. E.g., assume the owner gives access to
agent A who blocks himself. In that case, the paradox arises that A has access ex-
actly when he has no access. The well-founded model is three-valued on Access(A)
and EffectivelyBlocked(A). Some definitional paradoxes, such as the definition of the
truth predicate, have been under intensive scrutiny in philosophical logic.

The autoepistemic informal semantics. We now recall the informal semantics of logic
programs as autoepistemic theories, as it appeared in the papers by Gelfond and Lifs-
chitz (1988; 1990), and which was formalized by the stable semantics. An alternative
review of the informal semantics for this logic can be found in (Gelfond and Kahl,
2014, Section 2.2.1). For simplicity, here we only consider the propositional case.
Logic programs with variables are interpreted by means of their so-called grounding
that transforms them into propositional programs. We call this informal semantics of
programs the autoepistemic informal semantics and we denote it by GLI .

Table 2 shows the autoepistemic informal semantics GLI of extended programs,
with negation-as-failure and classical negation. Again, we assume an intended inter-
pretation I of the atoms of the program. As it is clear from this table, under GLI ,
extended logic programs have both classical and non-classical connectives. On the one
hand, the comma operator is the classical conjunction and the rule operator ← is the
classical material implication. Of the two negation operators, symbol ¬ is classical
negation, whereas not is an epistemic negation, often called the default negation. The
implicit composition operator (constructing the meaning of the program out of indi-
vidual rules) is essentially standard conjunction, with this understanding that the agent
knows only what is explicitly stated. Nonmonotonicity arises due to the introspec-
tive nature of the negation by default: adding a rule may lead to a new belief A, thus
falsifying not A, which may turn previously believed literals into unbelieved.

6

Φ GLI(Φ)

propositional atom A I(A)

propositional literal ¬A it is not the case that I(A)

expression of the form not C the agent does not know that GLI(C)

expression of the form Φ1,Φ2 GLI(Φ1) and GLI(Φ2)

rule Head← Body
if GLI(Body) then GLI(Head)
(in the sense of material implication)

program P = {r1, . . . , rn}

All the agent knows is:
• GLI(r1) and
• . . .
• GLI(rn)

Table 2: The Gelfond-Lifschitz (1988; 1990) autoepistemic informal semantics for ASP formulas.

On the formal level, the key semantic structure is a set X of FO-literals, an answer
set. Mathematically, if that set contains only atoms, it has the same format as a structure
of propositional logic. However, its informal semantics is completely different. In
GLI , a (consistent) set X of literals is viewed as an abstraction of a belief state of
some agent. An agent in a belief state considers certain states of affairs as possible and
the others as impossible. What these possible states of affairs are is not represented
in this semantics. Instead, the state of belief is abstractly represented by the set X of
believed literals, those that are true in all the possible states of affairs. Specifically,X is
the set of literals such that I(L) is true in all states of affairs considered possible in the
state of belief. A negation-by-default literal not L holds true in X if L 6∈ X , that is,
if L is false in at least one possible state of affairs. Thus, the informal semantics GLI
explains the meaning of programs in terms of what literals an agent with incomplete
knowledge of the application domain might believe in.

It was argued by Gelfond and Lifschitz (1988, 1990) (using a mapping to autoepis-
temic logic) that the answer sets of an extended logic program Π correspond one to one
to the potential states of belief of an agent holding GLI(Π) to be true. In other words,
given that GLI(Π) represents precisely the knowledge of the agent, X could be the set
of literals the agent believes.

If Π is a logic program (without classical negation), the state of affairs in which
all atoms are true satisfies all rules since they make their heads true. It follows that no
negative literal is believed. Hence, all stable models are sets of atoms only. As said
before, such sets mathematically correspond to structures of propositional vocabular-
ies. However, it is a mistake to interpret such sets as abstractions of possible states of
affairs.

To illustrate this informal semantics, let us consider the well-known interview ex-
ample of Gelfond and Lifschitz (1991).

Example 2. Whether students of a certain school are eligible for a scholarship de-

7

pends on their GPA and on their minority status. The school has an incomplete database
about candidate students. Students for which the school has insufficient information to
decide eligibility should be invited for an interview. The following ELP program ex-
presses the school’s knowledge.

Eligible(x)← HighGPA(x).

Eligible(x)← FairGPA(x),Minority(x).

¬Eligible(x)← ¬FairGPA(x),¬HighGPA(x).

Interview(x)← not Eligible(x), not ¬Eligible(x)

Minority(brit).

HighGPA(mary).

¬Minority(david).

FairGPA(david).

The three rules for Eligible specify a partial policy for eligibility: they determine the
eligibility for all students except for non-minority students with fair GPA. In this sense,
under GLI , this program does not actually define when a student is eligible. The next
rule is epistemic. It expresses that the school interviews a person whose eligibility is
unknown. The remaining rules specify partial data on students Mary, Brit and David.
In particular, FairGPA(brit) and even FairGPA(mary) are unknown. This is all
the school knows.

For Mary, the first rule applies and the school knows that she is eligible. The
epistemic fourth rule will therefore not conclude that she should be interviewed. In-
cidentally, nor is it implied that she will not be interviewed; the school (formally, the
program) simply does not know. This follows from the informal semantics of the implicit
composition operator: “all the agent knows is. . . ”. For Brit and David, their eligibility
is unknown. However, the reasons are different: for Brit because of lack of data, for
David because the policy does not specify it. Therefore, both will be interviewed. The
unique answer set extends the student data with the following literals:

Eligible(mary), Interview(brit), Interview(david).

The crucial property of this example is that it is inherently epistemic. Whether a
student should be interviewed does not only depend on the properties of the student
in the objective state of affairs, but also on the schools knowledge about this student.
Because of this property, an epistemic logic is required here.

The interview example, with its inherent reflexive component, is a clear case where
the informal semantics GLI applies. It is written in the language of extended logic
programming, for which the definitional informal semantics is not defined. For a com-
parison of the two informal semantics on the same program, consider the next example.

Example 3. Consider the following propositional program Π :{
P ← not Q

}
8

Its unique stable, well-founded or completion model is {P}. For a first intended in-
terpretation I1, the situation is that a man gets separated from his family after an
earthquake and has no information about their safety. Let I1(P) mean that the man
is unhappy and I1(Q) that his family is safe. Under GLI1 , the program expresses that
all the man knows is that if he does not know that his family is safe, then he is unhappy.
The stable model abstracts the unique possible state of belief wherein he does not know
whether his family is safe and he is unhappy. Under the definitional informal semantics
OBI1 , the program contains the empty definition for Q which expresses that his family
is not safe; furthermore it expresses that the man is unhappy if and only if his family
is not safe (objective negation). Under this reading, the program expresses complete
knowledge admitting a unique possible state of affairs where the family is not safe and
the man is unhappy. To illustrate the difference between the two interpretations, we
consider the state of affairs abstracted as the structure {P,Q} where the man is un-
happy and his family is safe (but the man is not aware of this). This is a possible state
of affairs in the autoepistemic informal semantics and impossible in the definitional
semantics. Here clearly the autoepistemic reading is correct while the definitional one
is incorrect.

For an alternative intended interpretation I2 where the definitional informal se-
mantics is correct and the autoepistemic one is not, let I2(Q) mean that Lincoln is
alive and I2(P) that he is dead. It is clear that under this intended interpretation, the
definitional, objective informal semantics gives a reading of this program that is true
in the world (Lincoln is not alive, and he is dead if and only if he is not alive) while the
autoepistemic one does not. The state of affairs abstracted as {P,Q} where Lincoln is
both alive and dead is impossible in this scenario.

Discussion. The problem of negation-as-failure as it arose in the 1970s was in the first
place a problem with the informal semantics for logic programming. Over the years,
two informal semantics for LP were proposed: the autoepistemic one GLI and the def-
initional one OBI . They assign different meaning to the main connectives← and not.
In one case, negation is non-standard epistemic, in the other it is standard classical
objective negation. They also assign different meaning to the semantic concepts (in-
terpretations, answer sets, models, |=) making it possible that the same program under
the same formal semantics can be explained differently in the two informal semantics.

Both informal semantics make sense. For both, knowledge scenarios in application
domains are found that are naturally expressed by logic programs under the specific
informal semantics. However, they are fundamentally different. When under some
intended interpretation I, one of the informal semantics gives a reading of a program
Π that is true in the domain, the other does not and vice versa.

While both informal semantics make sense, there is an important qualitative dif-
ference between them. The definitional informal semantics explains the meaning of
logic programs in terms of precise, objective definitions of the kind that are used in
mathematical and scientific text. Objective definitional knowledge is available in great
quantities in many applications. On the other hand, autoepistemic reasoning was de-
veloped as a principle for commonsense reasoning. It is a complex form of knowledge
and it is subject to many different interpretations (Denecker et al., 2011). As such, the
autoepistemic reading of programs is often hard to understand.

9

Independent of the informal view one takes, pure logic programming poses serious
limitations as a knowledge representation language, and needs to be extended. How-
ever, what these limitations are, and hence, in what direction the language should be ex-
tended, depends strongly on the informal semantics one works with. In the definition-
based informal semantics, the problem is that no incomplete knowledge can be rep-
resented since all predicates need to be defined. The natural extension therefore is to
drop LP’s assumption that a program should define every predicate and to consider
definitions that define one or more symbols in terms of other parameter symbols. This
road was been followed in the logic FO(.), in which such generalized definitions were
integrated in classical logic (Denecker, 2000; Denecker and Ternovska, 2008) to com-
pensate the latter’s weakness on inductive definability.

In the autoepistemic interpretation, LP’s weakness is that no negative information
can be expressed which, as explained above, led Gelfond and Lifschitz to extend LP
with classical negation resulting in ELP. Even then, ELP is not an expressive KR lan-
guage for expressing autoepistemic knowledge compared to full autoepistemic logic
(Moore, 1984, 1985) and default logic (Reiter, 1980).

Recently, the language of ELP has flourished as a method for representing and solv-
ing computational search problems in the domain of Answer Set Programming. Cru-
cial in this development has been the emergence of the Generate-Define-Test (GDT)
paradigm for constructing ASP programs. Over time, to support GDT programming,
answer set programming has developed a richer language with new features includ-
ing choice rules, aggregates and weight constraints. Interestingly, the applications to
which this GDT methodology is typically applied involve only objective knowledge,
and they lack an introspective epistemic agent. The Gelfond-Lifschitz informal seman-
tics is therefore not suitable for these GDT programs. The new language extensions so
far eluded explanation in the autoepistemic view.

In (Denecker et al., 2012) we showed that such programs can be split into theories
similar as those of the logic FO(.): combinations of, essentially, objective FO axioms
and definitions. For such programs, the natural interpretation of answer sets is as ab-
stractions of possible states of affairs, and correspondingly, the informal semantics of
not is standard classical negation.

Finally, we hope to have showed in this paper that analysis of the informal seman-
tics of LP and ASP is fruitful for understanding their declarative foundations and for
their use and further development as KR languages.

References

Apt, K. R., Blair, H. A., Walker, A., 1988. Towards a theory of declarative knowledge.
In: Minker, J. (Ed.), Foundations of Deductive Databases and Logic Programming.
Morgan Kaufmann, pp. 89–148.

Bidoit, N., Froidevaux, C., 1987. Minimalism subsumes default logic and circumscrip-
tion. In: Proceedings of IEEE Symposium on Logic in Computer Science, LICS-87.
IEEE Press, pp. 89–97.

Bidoit, N., Froidevaux, C., 1991. Negation by default and unstratifiable logic programs.
Theoretical Computer Science 78 (1, (Part B)), 85–112.

10

Clark, K. L., 1978. Negation as failure. In: Logic and Data Bases. Plenum Press, pp.
293–322.

Denecker, M., 2000. Extending classical logic with inductive definitions. In: Lloyd,
J. W., Dahl, V., Furbach, U., Kerber, M., Lau, K.-K., Palamidessi, C., Pereira, L. M.,
Sagiv, Y., Stuckey, P. J. (Eds.), CL. Vol. 1861 of LNCS. Springer, pp. 703–717.

Denecker, M., Lierler, Y., Truszczyński, M., Vennekens, J., 2012. A Tarskian infor-
mal semantics for answer set programming. In: Dovier, A., Costa, V. S. (Eds.),
ICLP (Technical Communications). Vol. 17 of LIPIcs. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, pp. 277–289.

Denecker, M., Marek, V., Truszczyński, M., 2011. Reiter’s default logic is a logic of au-
toepistemic reasoning and a good one, too. In: Brewka, G., Marek, V., Truszczyński,
M. (Eds.), Nonmonotonic Reasoning – Essays Celebrating Its 30th Anniversary. Col-
lege Publications, pp. 111–144.
URL http://arxiv.org/abs/1108.3278

Denecker, M., Ternovska, E., Apr. 2008. A logic of nonmonotone inductive definitions.
ACM Trans. Comput. Log. 9 (2), 14:1–14:52.
URL http://dx.doi.org/10.1145/1342991.1342998

Denecker, M., Vennekens, J., 2014. The well-founded semantics is the principle of
inductive definition, revisited. In: Baral, C., De Giacomo, G., Eiter, T. (Eds.), KR.
AAAI Press, pp. 1–10.
URL http://www.aaai.org/ocs/index.php/KR/KR14/paper/
view/7957

Frege, G., 1918. Beitrge zur Philosophie des deutschen Idealismus I. 2. Ch. Der
Gedanke: eine logische Untersuchung.

Gelfond, M., Kahl, Y., 2014. Knowledge Representation, Reasoning, and the Design
of Intelligent Agents. Cambridge University Press, Cambridge, UK.

Gelfond, M., Lifschitz, V., 1988. The stable model semantics for logic programming.
In: Kowalski, R. A., Bowen, K. A. (Eds.), ICLP/SLP. MIT Press, pp. 1070–1080.
URL http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.
1.1.24.6050

Gelfond, M., Lifschitz, V., 1990. Logic programs with classical negation. In: Warren,
D. H. D., Szeredi, P. (Eds.), ICLP. MIT Press, pp. 579–597.

Gelfond, M., Lifschitz, V., 1991. Classical negation in logic programs and disjunctive
databases. New Generation Computing 9 (3/4), 365–386.

Harel, D., 1980. Review on logic and data bases.

Kowalski, R. A., 1974. Predicate logic as programming language. In: IFIP Congress.
pp. 569–574.

11

Marek, W., Truszczyński, M., 1989. Stable semantics for logic programs and default
theories. In: E.Lusk, Overbeek, R. (Eds.), Proceedings of the North American Con-
ference on Logic Programming. MIT Press, pp. 243–256.

Moore, R. C., 1984. Possible-world semantics for autoepistemic logic. In: Proceedings
of the Workshop on Non-Monotonic Reasoning. pp. 344–354, reprinted in: M.
Ginsberg, ed., Readings on Nonmonotonic Reasoning, pages 137–142, Morgan
Kaufmann, 1990.
URL http://www.sri.com/sites/default/files/uploads/
publications/pdf/616.pdf

Moore, R. C., 1985. Semantical considerations on nonmonotonic logic. Artif. Intell.
25 (1), 75–94.
URL http://dx.doi.org/10.1016/0004-3702(85)90042-6

Reiter, R., 1977. On closed world data bases. In: Gallaire, H., Minker, J. (Eds.), Logic
and Data Bases. Plenum Press, pp. 55–76.

Reiter, R., 1980. A logic for default reasoning. Artif. Intell. 13 (1-2), 81–132.
URL http://dx.doi.org/10.1016/0004-3702(80)90014-4

Roussel, P., 1975. Prolog, manuel de référence et d’utilisation. Tech. rep., Groupe In-
telligence Artificielle, Faculté des Science de Luminy, Université Aix-Marseille II,
France, September.

van Emden, M. H., Kowalski, R. A., 1976. The semantics of predicate logic as a pro-
gramming language. J. ACM 23 (4), 733–742.
URL http://dx.doi.org/10.1145/321978.321991

Van Gelder, A., Ross, K. A., Schlipf, J. S., 1991. The well-founded semantics for
general logic programs. J. ACM 38 (3), 620–650.
URL http://dx.doi.org/10.1145/116825.116838

12

