
The s(ASP) Predicate Answer Set Programming System

Kyle Marple, Elmer Salazar, Zhuo Chen, Gopal Gupta

Department of Computer Science
The University of Texas at Dallas

Abstract: We present the s(ASP) system that computes stable models
of normal logic programs, i.e., logic programs extended with negation, in
the presence of predicates with arbitrary terms. Such programs need not
have a finite grounding, so traditional SAT solver-based methods do not
apply. Our method relies on the use of an extended Herbrand universe,
as well as coinduction, constructive negation and a number of other novel
techniques. Using our method, a normal logic program with predicates can
be executed directly under the stable model semantics without requiring
it to be grounded either before or during execution and without requiring
that its variables range over a finite domain. Our method is quite general
and supports the use of terms as arguments, including lists and complex
data structures. A prototype implementation has been realized and non-
trivial applications have been developed to demonstrate the feasibility of
our method.

1 Introduction

Answer Set Programming (ASP) [1] has emerged as a successful paradigm
for developing intelligent reasoning applications. ASP is based on adding
negation as failure to logic programming under the stable model semantics
regime [2]. ASP allows for sophisticated reasoning mechanisms that are
employed by humans (common sense reasoning, default reasoning, coun-
terfactual reasoning, abductive reasoning, etc.) to be modeled elegantly.
Numerous systems have been built to execute answer set programs that
are extremely sophisticated and efficient. CLASP is the best representa-
tive of these systems [8]. These systems restrict programs to predicates
that only have variables and constants as arguments (general structures
are not allowed). Answer sets (or stable models) of such programs are
computed by grounding the program rules with the (finite) Herbrand uni-
verse, suitably transforming it, and then using a SAT solver to compute
models of the transformed program. These models of the transformed pro-
gram are the stable models of the original Answer Set Program. There are
many problems with these model-finding, SAT solver-based approaches:

1. Since SAT solvers can only handle propositional programs, these ap-
proaches only work for finitely-groundable programs. That is, pro-
grams with structures and lists occurring in arguments of predicates
cannot be executed, as grounding of such programs will result in an
infinite-sized program (due to the Herbrand universe being infinite).
In many instances, lists and structures are essential for representing
information.

2. Grounding of the program can lead to an exponential blowup in pro-
gram size. For programs to be executable in such a system, a pro-
grammer has to be aware of how the grounding process works and
how the ASP solver works and then they have to write their code in
such a way that this blowup is minimized. This places undue burden
on the programmer, as the programmer has to have knowledge of the
grounding procedure as well as the model-finding process.

3. If the number of constants in the program is large, then a SAT-based
approach may be infeasible due to the size of the grounded program
that will be created. It is next to impossible to build a large general-
purpose knowledge-based system—for example, a medical diagnosis
system—using such an approach, as such a knowledge-based system
will potentially have tens of thousands of constants. The challenge
is exacerbated by the fact that such systems are generally developed
incrementally over time.

4. SAT-based ASP solvers do not allow reasoning with real numbers.
5. SAT-based model-finding approaches compute the entire model. That

is obviously an overkill. Most of the time users are interested in a
specific piece of information. Thus, if we were to develop a general
purpose knowledge-based system, then the current ASP systems will
compute the entire model, i.e., everything that can be inferred from
the knowledge-base will be computed.

6. Often, it is hard to isolate the solution that is embedded in the model
that is produced by the SAT solver. For example, if one solves the
Tower of Hanoi problem using a SAT-based ASP solver, then the
answer set will contain a large set of moves that are in the model.
One cannot easily isolate the sequence of moves that represent the
solution to the problem.

7. Since ASP systems compute the entire model, even a minor inconsis-
tency in a narrow part of the knowledgebase will result in the system
concluding that no answer set exists. A practical, large, real-world
knowledgebase is very likely going to contain inconsistencies.

8. Justification for why an atom is present in an answer set is difficult
to produce.

While SAT solver-based ASP systems such as CLASP are very pow-
erful, their use is limited to solving specific well-defined problems, e.g.,
resource optimization problems or planning problems. Their use is sub-
optimal for implementing large-scale, general-purpose knowledge-based
system due to the problems mentioned above.

2 Query-driven Execution of Answer Set Programs

We have been working on designing query-driven answer set program-
ming systems [3] for last several years. A query-driven system computes
the partial answer set that contains the query. Thus, it does not com-
pute the entire answer set; it computes only those parts of the answer set
that are relevant to answering the query. Having a query-driven system
addresses problems 5, 6, 7, and 8 mentioned above [4], however, issues
mentioned in points 1, 2, 3 and 4 above still remain as problems. To alle-
viate problems 1, 2, 3 and 4 above, we have extended our system to allow
general-purpose predicates. Thus, our extended system, called s(ASP),
admits answer set programs containing predicates that are allowed to
have variables, constants and structures as arguments [5, 6].

Our s(ASP) system does not ground the program. It can be thought of
as full Prolog extended with negation-as-failure under the stable model
semantics regime [6]. Problem 1, 2, 3 and 4 above are eliminated by
s(ASP), since programs do not have to be grounded prior to execution.
Note also that incorporating the stable model semantics within Prolog
means that not everything has to be modeled using ASP, as is the case if
one uses traditional ASP systems. For example, generator predicates can
be written using standard Prolog predicates such as member and select;
they don’t have to be always written using choice rules alone.

As we extend ASP to allow direct execution of predicates, a number
of subtleties arise. As an example, consider the following simple program:

d(1).

p(X) :- not d(X).

If we ground this program, we obtain:

d(1).

p(1) :- not d(1).

Given the query ?- p(X)., its execution will always fail for the grounded
program (the answer set of the grounded program is {d(1)}). However,

execution of the same query with the original program with predicates
under s(ASP) should succeed and return the solution {p(X), not d(X)

(X 6= 1)} (note that since s(ASP) computes the partial answer set con-
taining the query, both positive and negative atoms have to be specified).
Note that the answer set computed by s(ASP) is still compatible with the
grounded program, if we restrict X to range over the domain {1}.

As an example of an actual s(ASP) program, consider the answer set
program for finding Hamiltonian cycles in a graph taken from [1]:

reachable(V) :- chosen(U, V), reachable(U).

reachable(0) :- chosen(V, 0).

% Every vertex must be reachable.

:- vertex(U), not reachable(U).

% Choose exactly one edge from each vertex.

other(U, V) :-

vertex(U), vertex(V), vertex(W),

V \= W, chosen(U, W).

chosen(U, V) :-

vertex(U), vertex(V),

edge(U, V), not other(U, V).

% Two edges cannot be incident on the same vertex.

:- chosen(U, W), chosen(V, W), U \= V.

% Sample graph: vertices and connecting edges.

vertex(0). vertex(3).

vertex(1). vertex(4).

vertex(2).

edge(0, 1). edge(1, 2).

edge(2, 3). edge(3, 4).

edge(4, 0). edge(4, 1).

edge(4, 2). edge(4, 3).

Notice that the above program has an odd loop over negation. The partial
answer set produced for the query ?- reachable(0). is shown below.

{ chosen(0,1), chosen(1,2), chosen(2,3), chosen(3,4), chosen(4,0),

edge(0,1), edge(1,2), edge(2,3), edge(3,4), edge(4,0), edge(4,1),

edge(4,2), edge(4,3), other(0,0), other(0,2), other(0,3),

other(0,4), other(1,0), other(1,1), other(1,3), other(1,4),

other(2,0), other(2,1), other(2,2), other(2,4), other(3,0),

other(3,1), other(3,2), other(3,3), other(4,1), other(4,2),

other(4,3), other(4,4), reachable(0), reachable(1), reachable(2),

reachable(3), reachable(4), vertex(0), vertex(1), vertex(2),

vertex(3), vertex(4), not chosen(0,0), not chosen(0,2), not

chosen(0,3), not chosen(0,4), not chosen(0,Var644) (Var644 \= 0,

Var644 \= 1, Var644 \= 2, Var644 \= 3, Var644 \= 4), not

chosen(1,0), not chosen(1,1), not chosen(1,3), not chosen(1,4), not

chosen(1,Var710) (Var710 \= 0, Var710 \= 1, Var710 \= 2, Var710 \=

3, Var710 \= 4), not chosen(2,0), not chosen(2,1), not chosen(2,2),

not chosen(2,4), not chosen(2,Var776) (Var776 \= 0, Var776 \= 1,

Var776\= 2, Var776 \= 3, Var776 \= 4), not chosen(3,0), not

chosen(3,1), not chosen(3,2), not chosen(3,3), not chosen(3,Var842)

(Var842 \= 0, Var842 \= 1, Var842 \= 2, Var842 \= 3, Var842 \= 4),

not chosen(4,1), not chosen(4,2), not chosen(4,3), not chosen(4,4),

not chosen(4,Var908) (Var908 \= 0, Var908 \= 1, Var908 \= 2, Var908

\= 3, Var908 \= 4), not chosen(Var627,_) (Var627 \= 0, Var627 \=

1, Var627 \= 2, Var627 \= 3, Var627 \= 4), not chosen(Var663,1) (

Var663 \= 0, Var663 \= 1, Var663 \= 2, Var663 \= 3, Var663 \= 4),

not chosen(Var734,2) (Var734 \= 0, Var734 \= 1, Var734 \= 2, Var734

\= 3, Var734 \= 4), not chosen(Var805,3) (Var805 \= 0, Var805 \=

1, Var805 \= 2, Var805 \= 3, Var805 \= 4), not chosen(Var876,4) (

Var876 \= 0, Var876 \= 1, Var876 \= 2, Var876 \= 3, Var876 \= 4),

not chosen(Var922,0) (Var922 \= 0, Var922 \= 1, Var922 \= 2, Var922

\= 3, Var922 \= 4), not edge(0,0), not edge(0,2), not edge(0,3),

not edge(0,4), not edge(1,0), not edge(1,1), not edge(1,3), not

edge(1,4), not edge(2,0), not edge(2,1), not edge(2,2), not

edge(2,4), not edge(3,0), not edge(3,1), not edge(3,2), not

edge(3,3), not edge(4,4), not other(0,1), not other(1,2), not

other(2,3), not other(3,4), not other(4,0), not vertex(Var31) (

Var31 \= 0, Var31 \= 1, Var31 \= 2, Var31 \= 3, Var31 \= 4) } .

The s(ASP) system makes several novel contributions:

– It implements a top-down, query-driven method that can execute nor-
mal logic programs with arbitrary predicates, thus solving a problem
that was hitherto considered unsolvable.

– Our method can be thought of as providing an operational semantics
to normal logic programs with predicates (or, Prolog extended with

negation as failure) under the stable model semantics. This can be
combined with other advanced features of logic programming such
as constraints over reals to develop extremely powerful applications
in an elegant manner, such as automated planning under real-time
constraints [11].

– The stable model semantics and answer set programming have been
shown to support powerful reasoning techniques such as default rea-
soning, counter-factual reasoning, abductive reasoning, etc. These rea-
soning capabilities now become available within Prolog.

– Abductive reasoning under the stable model semantics can be ele-
gantly realized, as it is not possible to find the minimum set of ab-
ducibles using SAT solver-based approaches.

– Justification (or a proof trace) for a given query can be produced
much more readily and naturally.

3 Implementation and Applications

A prototype implementation of the s(ASP) system has been developed
[5]. The system supports abductive reasoning. It also provides justification
(proof trace) for a given query. The implementation relies on several novel
techniques [6] that include:

• Coinduction: The execution algorithm relies on positive and negative
coinduction to detect even and odd cycles through negation.
• Dual Rules: Dual rules have been used to implement ASP systems,

however, their use has to be cleverly extended for the predicate case to
make sure that appropriate variables are bound to appropriate values.
• Constructive Negation: Unification algorithm has to be extended to al-

low for negatively constrained variables; essentially, for each unbound
variable the system has to also explicitly keep track of values that the
variable cannot be bound to.
• Extended Herbrand Universe: The Herbrand universe has to be ex-

tended to be a superset of the standard countably infinite Herbrand
universe.

Unfortunately, more details cannot be given due to lack of space. They
will appear in a forthcoming paper [6]. The correctness of the s(ASP)
method has been established. We show that the s(ASP) method is sound
for all legal programs and argue that while completeness is in fact impos-
sible to achieve, the method is still useful for a vast majority of practical
programs [6]. For finite, ground, legal programs, the method is indeed

complete. Note that legal programs are those that obey the following re-
strictions: (i) operands of arithmetic operations are ground at the time
they are executed; (ii) left recursion cannot lead to success; and, (iii) a
negatively constrained variable cannot be disunified with or constrained
against another negatively constrained variable.

The s(ASP) system is publicly available [5], and has been used to
develop a number of non-trivial applications based on ASP; it has also
been used to organize an AI hackathon [9]. Some of these applications
cannot be executed on traditional ASP systems such as CLASP, as these
applications make use of lists and structures to represent information.
They have been developed by people who are not experts in ASP. These
applications include:

• Degree Audit System: A system for automatically performing a
degree audit of a student’s undergraduate transcript at a US Univer-
sity, i.e., automatically determining whether a student can graduate
with a degree or not, has been developed using the s(ASP) system
[10]. The system represents the graduation requirements laid out in
the course catalog as ASP clauses. Use of negation is important for
representing these requirements. The system has to make use of lists,
and has hundreds of courses that appear as constants in the program
(hence its grounding will produce an inordinately large program).
• Physician Advisory System: A system for disease management,

particularly, for chronic heart failure has been developed using the
s(ASP) system [7]. This system automates the 80-page guidelines (that
the American College of Cardiology has developed) by representing
them in ASP. While the current system can be run under systems
such as CLASP due to the number of constants not being too large,
the final system that models a doctor’s full knowledge will have quite
a few constants, and advanced data-structures may be needed.
• Automating Textbook Knowledge: A system that represents high-

school level knowledge about cells (in the discipline of biology) as an-
swer set programs has been developed using s(ASP). It can answer
high-school level questions posed as s(ASP) queries. The goal is to
represent the knowledge in the entire introductory biology textbook
as an answer set program, and then be able to automatically answer
questions that would be asked of a student (the questions have to
be translated into ASP queries that are then executed to find the
answer).
• Birthday Gift Advisor: A recommendation system for birthday

gifts has also been developed using the s(ASP) system. This system

codes a human’s knowledge about friends, level of friendship, a per-
son’s wealth level, generosity level, and hobbies as answer set pro-
grams. When queried, the system can recommend a birthday present
for a particular friend (e.g., on one’s Facebook page). Note that other
similar (web-based) recommendation systems can be built too using
s(ASP).

4 Conclusion

We believe that the ASP paradigm is a very powerful paradigm that
allows for complex human thought processes to be elegantly emulated.
Complex reasoning patterns that humans use can be elegantly modeled
using ASP [7]. However, as argued above, the current model-finding, SAT
solver-based approaches are not able to realize the full power of ASP. We
argue that query-driven implementations of predicate ASP are crucial
to the paradigm’s success. An additional advantage of a query-driven ap-
proach over model-finding approaches is that in the latter case, everything
has to be modeled in the ASP paradigm, while in the former case both
the standard logic programming paradigm and the ASP paradigm can be
made to work together. Abductive reasoning under the stable model se-
mantics is also better realized in a query-driven approach such as s(ASP).

Significant progress has been made with the realization of the s(ASP)
system, however, a considerable amount of research remains to be done.
The s(ASP) system suffers from some of the same disadvantages that Pro-
log systems suffer (e.g., certain left-recursive programs may not terminate
or the search may have to be guided by the programmer). For this rea-
son it is important to extend the s(ASP) system with (i) constraint logic
programming over finite domains, (ii) constraint logic programming over
reals, and (iii) tabled logic programming. Note that due to top-down,
query-driven nature of execution, both constraints and tabling can be
naturally integrated into s(ASP). Finally, the problem of determining the
query-relevant part of a given knowledgebase has been solved for top-
down propositional ASP in the Galliwasp system, it remains a subject of
research in the predicate case.

Acknowledgment: Support from NSF Grant IIS 1423419 is gratefully
acknowledged.

References

1. C. Baral. Knowledge Representation - Reasoning & Declarative Problem Solving.
Cambridge Univ. Press. 2003.

2. M. Gelfond, V. Lifschitz. The stable model semantics for logic programming. Proc.
Joint International Conference and Symposium on Logic Programming, 1070–1080.
1988.

3. K. Marple, A. Bansal, R. Min, G. Gupta. Goal-directed execution of answer set
programs. Proc. PPDP 2012: 35-44

4. K. Marple, G. Gupta. Dynamic Consistency Checking in Goal-Directed Answer
Set Programming. TPLP 14(4-5): 415-427 (2014)

5. K. Marple, E. Salazar, G. Gupta. The s(ASP) system. https://sourceforge.net/
projects/sasp-system/

6. K. Marple, E. Salazar, G. Gupta. Computing Stable Models of Normal Logic Pro-
grams without Grounding. Forthcoming paper. March 2017.

7. Z. Chen, K. Marple, E. Salazar, G. Gupta, L. Tamil. A Physician Advisory System
for Chronic Heart Failure management based on knowledge patterns. TPLP 16(5-
6):604-618, 2016.

8. M. Gebser, B. Kaufmann, A. Neumann, T. Schaub. clasp: A Conflict-Driven An-
swer Set Solver, Proc. LPNMR07, 2007. https://potassco.org/.

9. The UT Dallas AI Society. s(ASP) Hackathon. https://hackai16.devpost.com/
submissions

10. A. Sobhi, S. Srirangapalli, K. Marple, E. Salazar, G. Gupta. The UT Dallas Degree
Audit System. 2016. http://gradaudit.xyz/

11. Ajay Bansal, Neda Saeedloei, Gopal Gupta. Timed Planning. Proc. 23rd FLAIRS
Conference. AAAI Press. 2010.

