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Abstract
We propose a framework for a service robot to
behave intelligently in domains that contain in-
complete information, underspecified goals and dy-
namic change. Human robot interaction (HRI),
sensing actions and physical actions are uniformly
formalized in action language BC. An answer set
solver is called to generate plans that guide the
robot to acquire task-oriented knowledge and ex-
ecute actions to achieve its goal, including interact-
ing with human to gather information and sensing
the environment to help motion planning. By con-
tinuously interpreting and grounding useful sensing
information, robot is able to use contingent knowl-
edge to adapt to unexpected changes and faults.
We evaluate the approach on service robot Ke-
jia that serves drink to guests, a testing bench-
mark for general purpose service robot proposed by
Robocup@Home competition.

1 Introduction
Research on domestic service robots has received increasing
attention in recent years. A domestic service robot scenario
combines the research on autonomous robots, human-robot
interaction (HRI), computer vision, motion control and auto-
mated planning. Typical tasks of a domestic service robot in-
clude taking orders and serving drinks, welcoming and guid-
ing guests, or just cleaning up [Wachsmuth et al., 2015]. To
measure and compare the performance of such robotics sys-
tem, starting 2006, Robocup@Home, a part of Robocup ini-
tiative (www.robocup.org), defines a series of tests and one of
the most challenging tests is General Purpose Service Robot
(GPSR). An operator verbally specifies a complex, usually
partially defined task to the robot that may request any skill,
for instance, “serve Pepsi to Alice”. The robot, which only
has brief knowledge about the domain, needs to perform it,
report any problems, adapt to unexpected changes and find
alternative solutions.

Automated planning has been widely used for task plan-
ning and control in many service robot applications. In this
paper we are interested in developing a service robot whose
task planning integrates task-oriented knowledge acquisition.
We believe acquiring task-relevant knowledge proactively in

the context of specific planning problem will lead to a more
robust service robot facing incomplete domain, uncertainty
and faults. We particularly focus on three kinds of knowl-
edge. (i) Domain knowledge. The robot only has limited
amount of information about the domain or receives under-
specified goal. In order to perform its task to serve Pepsi
whose location is unknown, the robot needs to figure out
that “location” is a piece of missing information (instead of
“color”, for example, in this specific plan), and acquires it by
asking human. (ii) Control knowledge. When the robot is
facing a dining table and about to pick up Pepsi, it will mea-
sure the distance of the object to determine if it should move
closer, adjust its gripper, or simply fetch. The robot needs to
figure out at planning time that the distance of objects may
affect its manipulation strategy. (iii) Contingent knowledge.
Throughout performing the task, the robot should continu-
ously observe the environment, gather useful information, en-
rich its knowledge and adapt to the change. This is particu-
larly important because the objects in domestic environment
keep changing and the information provided by human can be
vague or erroneous. Consequently, the robot has to start from
a partial, incomplete and unreliable domain representation to
generate plans to gather more information, in order to achieve
its goal.

We propose a uniform way to formalize HRI, sensing and
the physical actions together in a formal representation and
excute plans using classical “plan-execute-monitor-replan”
loop. Our method features: (a) a general modeling method-
ology of using BC [Lee et al., 2013] to represent the world
state, the robot’s belief state and how they are affected by HRI
actions, sensing actions and physical actions; (b) a continu-
ous observation mechanism to the execution loop to acquire
contingent knowledge; (c) a mechanism of symbol ground-
ing that captures objects whose properties dynamically chage
in the environment. The framework is implemented and
tested in robot Kejia [Chen et al., 2014], the champion of
Robocup@Home competition in 2014 and 2nd in 2015, who
serves drinks in a home environment.

2 Framework Overview
Shown in Figure 1, domain formalization in BC represents
type hierarchy, domain objects and causal laws. The causal
laws formalize effects of physical actions, HRI actions and
sensing actions on fluents that represent world state and the



Figure 1: The architecture overview

robot’s belief state. Initial domain objects are minimal and
are enriched when new information is discovered. Human
operator verbally specifies a goal which is translated by the
semantic parser into the goal representation. The robot uses
its sensor to obtain available world state and initialize its be-
lief state. They constitute of the initial current state of a plan-
ning problem. After that, the planner, which is actually an
answer set solver, is called to generate a plan that consists
of a sequence of actions, and a sequence of states before and
after the execution of each action.

Actions and states are sent to the execution controller. Ex-
ecution monitor and continuous observation start simulta-
neously. Continuous observation constantly receives inputs
from robot interface that senses domain information, grounds
sensing inputs into symbols and updates current state. If up-
date happens, it triggers a background verification process to
validate current plan, by calling answer set solver to perform
temporal projection reasoning, and sets replan flag if valida-
tion fails. Execution monitor sends action commands to con-
trollers in robot interface too, which operates hardware to per-
form actions and returns grounded HRI, physical, and sensing
results. Execution monitor compares the results with the ex-
pected state. If discrepancy is detected, it calls for replan.

Action controllers in robot interface directly operate low-
level functional modules. Functional modules generally rep-
resent domain information in numerical states, and symbolic
states are obtained through symbol grounding policies. It is
crucial to maintain a correct mapping between low-level nu-
merical states and high-level symbolic states for the robot to
behave consistently and correctly.

3 Domain Formalization and Plan Execution
We present a general methodology and examples of repre-
senting a domestic environment with rooms, furniture, drink
and people in which a service robot serves people drinks, a
typical GPSR testing domain in RoboCup competitions. Ini-
tially Alice may request service by saying “bring me Pepsi”.
The robot has no knowledge about the object locations, so
it may ask “where is the Pepsi”. Alice may tell the robot a
specific location “on the dining table”, a vague location “in
the dining room”, an erroneous location “on the cabinet”, or
simply say “I don’t know”. The robot utilizes this informa-

tion to find Pepsi, grasp it, put it in the basket, and bring it to
Alice. The robot needs to adapt to changing environment and
recover from various software and hardware failures.

3.1 Formalization in BC
Domain knowledge consists of (i) types, relations, objects
and (ii) causal laws that formalize the transition system.
Causal laws are divided into static laws, which describe how
the value of a fluent is determined by other fluents, and dy-
namic laws, which describe how the values of the fluents
change from one state to another.
Types. We use a rigid (time-independent) fluent to denote
type and object membership. For instance, we denote pepsi1
is a member of type pepsi by pepsi(pepsi1). Type hierar-
chy and relations are formalized using static laws such as
obj(X) if pepsi(X).
Causal Laws. Non-rigid fluents consists of two groups:
• world state is a collection of fluents that represent the

properties of the current world. It is further divided into
definite world state and possible world state. Definite
world state is affected by physical actions, such as mov-
ing affects the location of the robot. Possible world state
represents possible value of an unknown property of an
object. Possible world fluents are justified by belief flu-
ents when actual HRI and sensing occur.
• belief state consists of fluents that represent the robot’s

belief. For instance, the robot knows a bottle of coke
is located in the kitchen, or the robot knows an object
is within reachable distance to grasp. Belief state is af-
fected directly by HRI actions and sensing actions. It is
also updated by continuous observation.

The combination of fluents can be used to represent vari-
ous “epistemic states”. For instance, {objloc(pepsi1,kitchen),
objloc(pepsi1,diningroom), -believeobjloc(pepsi1,R)} for all
rooms R means it is possible for pepsi1 to be in kitchen or
in dining room, but the robot does not know it. They are im-
portant for symbol grounding during continuous observation
and execution (Section 5 and Section 6). Due to space limit,
below we give examples of formalizing HRI actions and sens-
ing actions, as formalizing physical actions using action lan-
guages has been well studied [Khandelwal et al., 2014].

Fluents

Definite World State: roboloc, ordertaken,
gripperempty, lifted, lifterheight

Possible World State: objloc, at, distance
Belief State: believeobjloc,believeplat,
believedistance,needsearch

Actions

Physical Actions: askorder,moveto,fetch,
adjustgotopose,adjustpose,setlifterheight,fetch,
liftup, stepback,putinbasket,handover

HRI Actions: askobjloc
Sensing Actions: detplane,checkdistance

Figure 2: List of non-rigid fluents and actions

The robot asks human the location of an object. To formal-
ize askobjloc, a possible world fluent objloc(O,L) denotes the
object O is possible to be at location L and a belief state flu-
ent believeobjloc(O,L) that denotes the “robot believes that”



object O is located at location L. When facing the person P ,
by executing action askbojloc(O,P) that asks person P the
location of O, the robot can obtain believeobjloc(O,L) if ob-
jloc(O,L) is possible. It is formalized by

askobjloc(O,P ) causes believeobjloc(O,L)
if roboloc(P ), objloc(O,L).

When the actual location is not given, there are many pos-
sibilities about the location of an object. Consequently, the
above causal law in practice simulates conditional effect of
an action. Formally studying the modal properties of this par-
ticular representation pattern using BC is, however, beyond
the scope of this paper and is a part of our future work.

During object manipulation, the robot approaches furniture
and detects planes. Known plane heights of different furni-
ture allows the robot to adjust its camera to proper angle for
more accurate object recognition. This action is denoted by
detplane(Pl, F ). We use a pair of fluents: at(Pl, F ), a pos-
sible world fluent that denotes plane Pl is possibly on furni-
ture F , and believeplat(Pl, F ), a belief state fluent that de-
notes the robot believes plane Pl is on furniture F :

detplane(Pl, F ) causes believeplat(Pl, F ) if at(Pl, F ),
robotloc(F ), believeobjloc(O,F ).

The second sensing action for manipulation is checkdis-
tance(O,F). It rotates the camera, identifies and localizes the
object, then calculates the distance relative to the gripper. The
distance can be grounded to prefech (the object can be di-
rectly grasped), distadjust (the robot needs to move closer)
and distgoto (the robot needs to move to another side of the
furniture to grasp). This action is formalized similarly by a
pair of possible world fluent and belief fluent:

checkdistance(O,F ) causes believedistance(O,D)
if roboloc(F ), lifterheight(Pl), believeat(Pl, F ), distance(O,D).

Based on the distance, the robot can make adjustments (ac-
tions adjustpose to move closer, adjustgotopose to move to
another side of the furniture), or fetch the object (fetch). Be-
sides, we also have static laws that derive fluent values from
other fluent values. They may be recursive in their nature:

believeobjloc(O,R) if believeobjloc(O,F ), in(F,R).
believeobjloc(O,P ) if believeobjloc(O, robot), roboloc(P ). (1)

3.2 Plan Generation and Execution Controller
The main control loop for plan generation and execution
follows the traditional “planning-execution-monitor-replan”
loop. The initial fluent set S for planning is generated as fol-
lows: (i) fluents that belong to definite world state are initial-
ized based on robot’s own sensor inputs; (ii) fluents that be-
long to belief state are initialized as negated literals, denoting
that the robot does not know anything about them. Possible
world state is not specified for initial state. According to the
semantics of BC, this will lead to all possible worlds to be
generated for the initial state that complement the incomplete
information. After that, the robot goes into a loop that keeps
taking orders and serving people. The robot starts by identi-
fying the person and asking “What can I do for you, Alice?”
Human may reply: “Please bring me Pepsi.” This sentence
is processed by the semantic parser. The semantic parser is

built upon a categorical combinatorial grammar parser [Xie
et al., 2013] that first translated natural language instructions
into ASP rules. In this case, rules

goal(1) ← obtained(O, alice,maxstep), pepsi(O).
← not goal(1). (2)

will be added to goal representation. After a goal is generated,
answer set solver is called to generate answer sets using the
union of domain representation D, goal G and initial fluent
set S. In the returned answer set, a sequence of actions and
estates that denote expected states before and after execution
of actions are obtained. The current sequence of actions is
sent to execution. The sequence of actions may successfully
reach the goal, or need replan. For some unrecoverable failure
or change, the goal may be aborted. The details of action
execution and result updateis explained in Section 5.

4 Continuous Sensing
Continuous sensing is a mechanism that whenever the sens-
ing modules discover new information, they will ground re-
sults and update current state S. It allows the robot to reduce
domain uncertainty at the same time of performing actions.
As a result, the robot can be a lot more adaptive and robust to
a changing domain and unreliable actions.

Continuous observation constantly monitors fluents grip-
perempty, believeplatloc, believeobjloc and believedistance.
Vision module uses 3D Kinect cameras to constantly rec-
ognize planes on the furniture and add facts to S. For
instance, if a new plane is detected from dining table, a
new symbol diningtableplane1 is generated, and believe-
plat(diningtableplane1,diningtable1) is added to S. At the
same time, the numerical values denoting the height and loca-
tion of the plane are also stored. The next time when a plane
at similar location is detected, the robot will compare the lo-
cation with the previous one, and recognize it as diningtable-
plane1 to avoid duplicates. Similarly, the vision module rec-
ognizes different kinds of drinks and their locations, gener-
ates symbols and adds grounded facts using fluent believeob-
jloc to update S. Once the object is identified, its distance
may be calculated. Based on a predefined interval, the calcu-
lated distance is classified into prefetch, distgoto, and distad-
just. The symbolic distance information is added to S using
fluent believedistance. However, there are two extra cases to
handle. The first case is when an object (e.g. pepsi1) is iden-
tified on the dining table but not within reach for the robot.
According to our semantics of fluents, this result maps to flu-
ents {¬believedistance(pepsi1, D),¬distance(pepsi1, D)}
where D be prefetch, adjustdist or adjustgoto. Note that
{¬believedistance(pepsi1, D)} is not sufficient to represent
this state, becaue it means the distance of pepsi is unknown
(this is how we set the initial state, see Section 3.2). The
second case is when vision module does not recognize any
pepsi1 when the robot is looking for it. In addition to setting
the above fluents, believeobjloc(pepsi1, diningtable1) is set
to false as well. This negative literal indicates the robot aban-
dons the information believeobjloc(pepsi1,diningtable1) that
is obtained from human or continuous sensing. New plan may
involve searching from nearby places or asking person again.



These facts enrich the knowledge about the domain and
help the robot to find better plans. It should be noted that
object recognition algorithm used by the vision module can
more reliably identify objects if the robot is not moving. So
if the robot believes an object is at certain location, while con-
tinuous observation does not recognize it, it will not update
the robot’s belief by removing believeobjloc fluent for this
object, because it may be a false positive.

Fluent values may be derived from other fluents by
static laws such as (1). When continuous observation
sets believeobjloc(pepsi1,diningtable1) to be true, believeob-
jloc(pepsi1,diningroom1) needs to be added to S too. It
can be derived by cautious reasoning with believeob-
jloc(pepsi1,diningtable1) and static laws of D using answer
set solver (Line 5). Cautious consequence of an answer set
program is the intersection of all answer sets. In some answer
set solver such as CLASP [Gebser et al., 2012], it is supported
by using a command-line option -e cautious.

Every time when S is updated, robot verifies if the cur-
rent plan is still the best one in presence of the new informa-
tion. A previous plan may easily become invalid, because,
for instance, an object to retrieve disappears unexpectedly or
the gripper does not catch the object. To validate the current
plan, we perform a temporal projection reasoning [Lee et al.,
2013, Section 7] by projecting the end result of executing the
remaining actions of the current plan in presence of the new
information. If the goal is satisfied in the projected result and
a shorter plan is not found, it means the current plan is still
the best. Otherwise, a flag indicator for replan is set, and the
current plan is aborted.

5 Execution Monitor and Action Controllers

Execution monitor dispatches action commands to corre-
sponding controllers in robot interface for execution. Con-
trollers operate hardware and, like in continuous observation,
ground and return symbolic results. The controllers send low-
level control commands to corresponding functional modules
(Line 6). In case of fetch, motion planner generates motion
trajectories. For HRI action askobjloc, speech module syn-
thesizes voice and speaks to a person. For sensing action
checkdistance, the controller is the same used in continuous
observation. The current action may be aborted due to con-
tinuous sensing.

When action execution finishes, its full effect is derived
through symbol grounding and cautious reasoning. Sym-
bol grounding is controller-specific. Manipulation tasks such
as fetch is successful when the arm and gripper success-
fully move along all trajectories and pressure sensor indicates
an object is grasped. For HRI action askobjloc, it may be
grounded to atoms like believeobjloc(pepsi1,diningroom1))
for vague information, believeobjloc(pepsi1,diningtable1))
for precise information, or needsearch(pepsi1) when human
answers “I don’t know”. Then the robot can search every
furniture for Pepsi. Symbol grounding for sensing actions is
handled the same way as in continuous observation. The ex-
ecution result is compared with expected state to determine if
replan is needed or goal is achieved.

6 Experiment and Evaluation

Figure 3: The robot hardware, SLAM generated map and vision

The presented framework is implemented in Kejia. Ke-
jia (Figure 3(a)) is equipped with a wheeled mobile base,
a single 5-Degree-of-Freedom arm, a microphone, 2D laser
range finder, Microsoft Kinect and a high-resolution fire wire.
Lower level modules includes motion control which drives
the mobile base and arm, 2D SLAM and navigation module
(Figure 3(b)), 3D vision to recognize and localize furniture
planes and pre-trained objects such as water, Pepsi, vitamin
drink and apple juice (Figure 3(c)). Our system is imple-
mented as a node in ROS (Robot Operating System) network.
It subscribes all necessary information (hardware feedbacks,
robot pose, recognized objects, etc.) and publishes control
messages (navigate to some location, turn on object recogni-
tion function, etc.) which affect the behavior of the robot.

Such robot is constantly affected by uncertainties: hard-
ware malfunction (e.g. arm stuck during grasping), percep-
tion errors (e.g. error in localization and recognized object
positions, false positives and low recognition rates), HRI un-
certainties (erroneous/vague information from human) and
changing environment (recognized object removed by hu-
man). Since initially drinks and their locations are unknown
to the robot and there are so many changing factors, it is ex-
tremely important for the robot to constantly gather domain
information using HRI and sensing, adapt to change and re-
cover from failure. In experiment we use CLASP as our an-
swer set solver, and serving one person typically need the
robot to execute 9–12 actions. Our demo video (https:
//youtu.be/zoKNFozlFPk) shows 7 consecutive tasks
in one trial how robot responds to so many challenges.
Scenario 1. Alice requested water. The robot started by ask-
ing Alice the location. Alice offered vague information: in
the dining room. The robot started searching in dining room
by visiting the end table first. On the end table, there were
Pepsi and water. However, due to unreliable vision, the robot
recognized them to be water, and brought one to Alice.
Scenario 2. Bob requested Pepsi. Since the robot didn’t rec-
ognize Pepsi in the previous task, it asked Bob the location
and obtained a correct answer: “end table”. At this very mo-
ment, Alice came to move the coke from end table to the din-
ing table, making Bob’s information erroneous. The robot,
after failed to identify the Pepsi on the end table, abandoned



Figure 4: Results of Experiment

the information from Bob, and found Pepsi on the side ta-
ble. However, due to manipulation error, the Pepsi slipped
out from the basket.
Scenario 3. Alice requested Vitamin. The robot got the an-
swer “dining table” from Alice and moved to the dining table,
but unfortunately, Vitamin was too far away for the robot to
recognize. However, the robot recognized closer objects: wa-
ter, Pepsi and apple juice. Consequently, the robot abandoned
human information and searched by itself. Finally, Vitamin
was found on the side board and was delivered to Alice.
Scenario 4. Bob requested water. The robot directly moved
to the end table because in Scenario 1, it mistakenly identified
Pepsi as water there. This time, vision correctly identified
that water was not there, and the robot found an alternative
by moving to the dining table and grasped water identified in
Scenario 3.
Scenario 5. Alice requested apple juice. The robot directly
moved to dining table and grasped the apple juice identified
in Scenario 3. Vitamin was also recognized this time.
Scenario 6. Bob requested Vitamin. The robot moved to din-
ing table for Vitamin directly. After measuring distance, it
adjusted its position by moving to another position to grasp.
The first attempt failed and was captured by continuous sens-
ing immediately. A new plan was generated and executed,
which was successful.
Scenario 7. Alice requested Pepsi. The robot directly moved
to Pepsi and grasped it. Unfortunately, the gripper hit the can
and stuck in its trajectory, leading to manipulation failure.

Despite so many uncertainties and failures, the robot man-
aged to handle most of them pretty robustly and achieved 5
of 7 tasks, by adaptive planning and reasoning. Vision errors
tend to occur more frequently in the early stage, but they are
all corrected later. Furthermore, after the 3rd run, the robot no
longer asked human questions because it has already acquired
sufficient information about drinks and their locations.

Following the scoring policy of Robocup@Home competi-
tion, we evaluate our framework by conducting a total of over
20 hours running the robot and finished about 157 orders in 45
trials. The trial stops due to unrecoverable fault. As is shown
in Figure 4, most often the robot can successfully serves 2–4
persons consecutively, with the average being 3 persons. De-
spite that, there are two trials that the robot managed to take 8
orders. Given the challenge of GPSR domain, the experiment
demonstrates robustness and the ability to tackle uncertainty,
failure and incomplete information.

7 Conclusion
In this paper we proposed a framework of building general
purpose service robot, by handling HRI, sensing and phys-

ical actions in a uniform representation and execution loop
with continuous observation. Our experiment demonstrates
robustness of the service robot in domestic environment. We
conclude that, proper use of symbolic planning combined
with task-oriented knowledge acquisition can be helpful to
handle unpredictable domain changes and perception errors,
two challenges in all GPSR domains. In the future, we will
address more complex domains with more reliable control.
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