
NoHR: A Protégé Plugin for Polynomial Querying of
Ontologies and Non-Monotonic Rules

Matthias Knorr and João Leite

NOVA LINCS, Departamento de Informática, Faculdade de Ciências e Tecnologia,
Universidade Nova de Lisboa

Abstract. Ontology languages and non-monotonic rule languages are both well-
known formalisms for knowledge representation, each with its own distinct bene-
fits and features, often orthogonal to each other. Both appear in the Semantic Web
stack in distinct standards – OWL and RIF. Over the last decade, a considerable
research effort has been put into trying to provide a framework that combines
the two. Yet, the considerable number of theoretical solutions was accompanied
by very few practical applications employing hybrid knowledge bases composed
of combinations of ontologies and rules. One of the reasons may be the lack of
viable practical tools to reason with such hybrid knowledge.
In this paper, we present NoHR (Nova Hybrid Reasoner), a plug-in for the ontol-
ogy editor Protégé – the first of its kind – that allows its users to query knowledge
bases composed of both an ontology and a set of non-monotonic rules, based on a
semantics which ensures that reasoning over these combined knowledge bases is
polynomial. Using a top-down reasoning approach, which ensures that only the
part of the ontology and rules that is relevant for the query is actually evaluated,
NoHR combines the capabilities of ELK and a dedicated direct translation with
the rule engine XSB Prolog to deliver very fast interactive response times. Test
results performed with large hybrid knowledge bases show that NoHR is able to
scale, hence offering a viable solution as the underlying reasoner for applications
using hybrid knowledge bases.

1 Introduction

Ontology languages in the form of Description Logics (DLs) [4] and non-monotonic
rule languages as known from Logic Programming (LP) [6] are both well-known for-
malisms in knowledge representation and reasoning (KRR) each with its own distinct
benefits and features. This is also witnessed by the emergence of the Web Ontology
Language (OWL) [13] and the Rule Interchange Format (RIF) [18] in the ongoing stan-
dardization of the Semantic Web driven by the W3C. 1

On the one hand, ontology languages have become widely used to represent and
reason over taxonomic knowledge. Since DLs are (usually) decidable fragments of first-
order logic, they are monotonic by nature, which means that drawn conclusions persist
when adopting new additional information. Furthermore, they allow reasoning on ab-
stract information, such as relations between classes of objects, even without knowing

1 http://www.w3.org

http://www.w3.org

any concrete instances. The balance between expressiveness and complexity of reason-
ing with ontology languages, inherited from DLs, is witnessed by the fact that the very
expressive general language OWL 2, with its high worst-case complexity, includes three
tractable (polynomial) profiles [22] each with a different application purpose in mind.

On the other hand, non-monotonic rules explicitly represent inference, from premises
to conclusions, focusing on reasoning over instances. They commonly employ the Closed
World Assumption (CWA), i.e., the absence of a piece of information suffices to de-
rive it being false, until new information to the contrary is provided, hence being non-
monotonic. This permits to declaratively model defaults and exceptions, in the sense
that the absence of an exceptional feature can be used to derive that the (more) common
case applies, and also integrity constraints, which can be used to ensure that the data
under consideration is conform to the desired specifications.

Combining both formalisms has been frequently requested by applications [24, 25,
1, 26]. For example, in clinical health care, large ontologies such as SNOMED CT,2

that are captured by the OWL 2 profile OWL 2 EL and its underlying description logic
(DL) EL++ [5], are used for electronic health record systems, clinical decision support
systems, or remote intensive care monitoring, to name only a few. Yet, expressing con-
ditions such as dextrocardia, i.e., that the heart is exceptionally on the right side of the
body, is not possible and requires non-monotonic rules. Another example can be found
in [24], where modeling pharmacy data of patients with the closed-world assumption
would have been preferred in the study to match patient records with clinical trials cri-
teria, because usually it can be assumed that a patient is not under a specific medication
unless explicitly known. In [1] it is shown that in Legal Reasoning, besides the well
known need for default reasoning afforded by non-monotonic rules, it is also necessary
to reason in the absence of concrete known individuals (instances), hence requiring
features found in ontology languages such as DL.

Finding such a combination is a non-trivial problem due to the mismatch between
semantic assumptions of the two formalisms, and the considerable differences as to how
decidability is ensured in each of them, where a naive combination can easily become
undecidable. In recent years, there has been a considerable amount of effort devoted to
combining DLs with non-monotonic rules – see, e.g., related work in [10, 23] – but this
has not been accompanied by similar variety of reasoners and applications.

In this paper, we describe NoHR3 (Nova Hybrid Reasoner), a plug-in for the on-
tology editor Protégé 5.0,4 that allows the user to query combinations of EL+

⊥ or DL-
LiteR ontologies and non-monotonic rules in a top-down manner.

NoHR is theoretically founded on the formalism of Hybrid MKNF under the well-
founded semantics [19] which comes with two main arguments in its favor. First, the
overall approach, which was introduced in [23] and is based on the logic of minimal
knowledge and negation as failure (MKNF) [21], provides a very general and flexible
framework for combining DL ontologies and non-monotonic rules (see [23]). Second,
[19], which is a variant of [23] based on the well-founded semantics [11] for logic pro-
grams, has a lower data complexity than the former – it is polynomial for polynomial

2 http://www.ihtsdo.org/snomed-ct/
3 http://centria.di.fct.unl.pt/nohr/
4 http://protege.stanford.edu

http://www.ihtsdo.org/snomed-ct/
http://centria.di.fct.unl.pt/nohr/
http://protege.stanford.edu

DLs – and is amenable for applying top-down query procedures, such as SLG(O) [2], to
answer queries based only on the information relevant for the query, and without com-
puting the entire model – no doubt a crucial feature when dealing with large ontologies
and huge amounts of data.

NoHR – the first Protégé plug-in to integrate non-monotonic rules and top-down
queries – is implemented in a way that combines the capabilities of the DL reasoner
ELK [17] (for EL+

⊥) and a dedicated direct translation (for DL-LiteR) with the rule
engine XSB Prolog,5 exhibiting the following additional features:

– rule editor within Protégé;
– possibility to define predicates with arbitrary arity;
– guaranteed termination of query answering;
– choice between one/many answers;
– robustness w.r.t. inconsistencies between the ontology and the rules;
– scalable fast interactive response times.

2 Preliminaries

We start with some preliminary notions to illustrate the kind of hybrid knowledge bases
considered by NoHR. We begin with some notation on the description logics underly-
ing the OWL 2 profiles, EL and QL, referring to [4] for a more general and thorough
introduction to DLs. Then we present hybrid MKNF knowledge bases, followed by a
basic description on how to perform query answering.

2.1 Description Logics

The language of EL+
⊥, a large fragment of EL++ [5], the DL underlying the tractable

profile OWL 2 EL [22], is defined over countably infinite sets of concept names NC,
role names NR, and individual names NI as shown in the upper part of Table 1. Building
on these, complex concepts are introduced in the middle part of Table 1, which, together
with atomic concepts, form the set of concepts. We conveniently denote individuals by
a and b, (atomic) roles byR and S, atomic concepts byA, and concepts byB,C andD.
All expressions in the lower part of Table 1 are axioms. A concept equivalence C ≡ D
is an abbreviation for C v D andD v C. Concept and role assertions are ABox axioms
and all other axioms TBox axioms, and an ontology is a finite set of axioms.

The semantics of EL+
⊥ is defined in terms of an interpretation I = (∆I , ·I) consist-

ing of a non-empty domain ∆I and an interpretation function ·I . The latter is defined
for (arbitrary) concepts, roles, and individuals as in Table 1. Moreover, an interpretation
I satisfies an axiom α, written I |= α, if the corresponding condition in Table 1 holds.
If I satisfies all axioms occurring in an ontology O, then I is a model of O, written
I |= O. If O has at least one model, then it is called consistent, otherwise inconsistent.
Also,O entails axiom α, writtenO |= α, if every model ofO satisfies α. Classification
requires to compute all concept inclusions between atomic concepts entailed by O.

5 http://xsb.sourceforge.net

http://xsb.sourceforge.net

Syntax Semantics
atomic concept A ∈ NC AI ⊆ ∆I

atomic role R ∈ NR RI ⊆ ∆I ×∆I

individual a ∈ NI aI ∈ ∆I

top > ∆I

bottom ⊥ ∅
conjunction C uD CI ∩DI

existential restriction ∃R.C {x ∈ ∆I | ∃y ∈ ∆I : (x, y) ∈ RI ∧ y ∈ CI}
concept inclusion C v D CI ⊆ DI

role inclusion R v S RI ⊆ SI

role composition R1 ◦ · · · ◦Rk v S (x1, x2) ∈ RI
1 ∧ . . . ∧ (xk, y) ∈ RI

k → (x1, y) ∈ SI

concept assertion A(a) aI ∈ AI

role assertion R(a, b) (aI , bI) ∈ RI

Table 1. Syntax and semantics of EL+
⊥.

In DL-LiteR one language of the DL-Lite family [7, 3] and underlying OWL 2
QL, complex concepts and roles can be formed according to the following grammar

B → A | ∃Q C → B | ¬B Q→ R | R− P → Q | ¬Q
where, in addition to the already mentioned, R− is the inverse of the (atomic) role R.

A DL-LiteR TBox contains concept inclusions of the form B v C and role inclu-
sions of the form Q v P , and a DL-LiteR ABox contains assertions of the form A(a)
and R(a, b), with A, B, C, Q, P , and R defined as above.

The semantics of DL-LiteR is also based on interpretations I with the difference
that ·I assigns to each individual a a distinct6 element aI of ∆I and the following
extensions to constructors not shown in Table 1:

(P−)I = {(i2, i1) | (i1, i2) ∈ P I} (¬B)I = ∆I \BI

(∃Q)I = {i | (i, i′) ∈ QI} (¬Q)I = ∆I ×∆I \QI

The notions of model, (in-)consistency, and entailment coincide with those for EL+
⊥.

EL+
⊥ is tailored towards reasoning with large conceptual models, i.e., large TBoxes,

while DL-LiteR focuses on answering queries over huge amount of data, i.e., large
ABoxes. Standard reasoning tasks for both DLs are polynomial, in particular, classifi-
cation for EL+

⊥ is PTIME-complete, and query-answering for DL-LiteR even in AC0.

2.2 MKNF Knowledge Bases

MKNF knowledge bases (KBs) build on the logic of minimal knowledge and negation
as failure (MKNF) [21]. Two main different semantics have been defined [23, 19], and

6 Hence, the unique name assumption is applied and, as shown in [3], dropping it would increase
significantly the computational complexity of DL-LiteR.

we focus on the well-founded version [19], due to its lower computational complexity
and amenability to top-down querying without computing the entire model. Here, we
only point out important notions following [14], and refer to [19] and [2] for the details.

We start by recalling MKNF knowledge bases as presented in [2] to combine an
ontology and a set of non-monotonic rules (similar to a normal logic program).

Definition 1. Let O be an ontology. A function-free first-order atom P (t1, . . . , tn) s.t.
P occurs in O is called DL-atom; otherwise non-DL-atom. A rule r is of the form

H ← A1, . . . , An,not B1, . . . ,not Bm. (1)

where the head of r, H , and all Ai with 1 ≤ i ≤ n and Bj with 1 ≤ j ≤ m in the body
of r are atoms. A program P is a finite set of rules, and an MKNF knowledge base K is
a pair (O,P). A rule r is DL-safe if all its variables occur in at least one non-DL-atom
Ai with 1 ≤ i ≤ n, and K is DL-safe if all its rules are DL-safe.

DL-safety ensures decidability of reasoning with MKNF knowledge bases and can be
achieved by introducing a new predicate o, adding o(i) toP for all constants i appearing
in K and, for each rule r ∈ P , adding o(X) for each variable X appearing in r to the
body of r. Therefore, we only consider DL-safe MKNF knowledge bases.

Example 2. Consider an MKNF knowledge base for recommending vacation destina-
tions taken from [23] (with a few modifications). We denote DL-atoms and constants
with upper-case names and non-DL-atoms and variables with lower-case names.7

PortCity(Barcelona) OnSea(Barcelona,Mediterranean)

PortCity(Hamburg) NonSeaSideCity(Hamburg)

RainyCity(Manchester) Has(Manchester ,AquaticsCenter)

Recreational(AquaticsCenter)

SeaSideCity v ∃Has.Beach
Beach v Recreational

∃Has.Recreational v RecreationalCity

SeaSideCity(x)← PortCity(x),not NonSeaSideCity(x)

interestingCity(x)← RecreationalCity(x),not RainyCity(x)

hasOnSea(x)← OnSea(x , y)

false ← SeaSideCity(x),not hasOnSea(x)

summerDestination(x)← interestingCity(x),OnSea(x , y)

This example shows that we can seamlessly express defaults and exceptions, such as
every port city normally being a seaside city, integrity constraints, such as requir-
ing to know for every seaside city on which sea it lies, and at the same time taxo-
nomic/ontological knowledge including information over unknown individuals, such as
a seaside city being recreational even if we do not know the specific name of the beach.
Note that, unlike [23], the rule with head false is not a true integrity constraint in our

7 To ease readability, we omit the auxiliary atoms that ensure DL-safety and leave them implicit.

case. Rather, whenever the keyword false would be derivable, we know that there is at
least one seaside city for which we do not know on which sea it lies.

The semantics of MKNF knowledge basesK is usually given by a translation π into
an MKNF formula π(K), i.e., a formula over first-order logic extended with two modal
operators K and not. Namely, every rule of the form (1) is translated into a rule of
the form KH ← KA1, . . . ,KAn,not B1, . . . ,not Bm, π(P) is the conjunction of
the translations of its rules, and π(K) = Kπ(O) ∧ π(P) where π(O) is the first-order
translation of O. Reasoning with such MKNF formulas is then commonly achieved
using a partition of modal atoms, i.e., all expressions of the form Kϕ for each Kϕ or
not ϕ occurring in π(K). For [19], such a partition assigns true, false, or undefined to
(modal) atoms, and can be effectively computed in polynomial time. If K is MKNF-
consistent, then this partition does correspond to the unique model of K [19], and, like
in [2], we call the partition the well-founded MKNF model Mwf(K). Here,Kmay indeed
not be MKNF-consistent if the ontology alone is unsatisfiable, or by the combination of
appropriate axioms in O and rules in P , e.g., axiom A v ¬B in O, and facts A(a) and
B(a) in P . In the former case, we argue that the ontology alone should be consistent
and be repaired if necessary before combining it with non-monotonic rules. Thus, we
assume thatO occurring in K is consistent, which does not truly constitute a restriction
as we can always turn the ABox into rules without any effect on Mwf(K).

2.3 Querying in MKNF Knowledge Bases

In [2], a procedure, called SLG(O), is defined for querying MKNF knowledge bases
under the well-founded MKNF semantics. This procedure extends SLG resolution with
tabling [8] with an oracle to O that handles ground queries to the DL-part of K by
returning (possibly empty) sets of atoms that, together with O and information already
proven true, allows us to derive the queried atom. We refer to [2] for the full account of
SLG(O), and only discuss central ideas here.

SLG(O) is based on creating top-down derivation trees with the aim of answer-
ing (DL-safe) conjunctive queries Q = q(X) ← A1, . . . , An,not B1, . . . ,not Bm,
where each variable in Q occurs in at least one non-DL atom in Q, and where X is
the (possibly empty) set of requested variables appearing in the body. Query processing
involving an oractle to the ontology is intuitively handled as described next.

Example 3. Recall K in Ex. 2, and consider q = interestingCity(Manchester). We
find a rule whose head unifies with q, and new queries RecreationalCity(Manchester)
and not RainyCity(Manchester) are obtained. There is no rule whose head matches
the former, but we can query the ontology and the answer is yes together with an
empty set of atoms, i.e., RecreationalCity(Manchester) can be proven from O alone.
Now we handle not RainyCity(Manchester), so we query RainyCity(Manchester)
which can also be proven by O alone. Consequently, not RainyCity(Manchester)
fails, so q is false.

Now, consider q1 = interestingCity(Barcelona). We obtain again two new queries,
q2 = RecreationalCity(Barcelona) and q3 = not RainyCity(Barcelona). In this
case, q2 = RecreationalCity(Barcelona) cannot be proven from O alone, but the or-
acle could return Has(Barcelona,X) and Recreational(X), which, if we would find

XSBJava Virtual Machine
Protégé

NoHR Plugin

GUI

ELK

Query
Processor

InterProlog

NoHR
Rules Tab

OWL File

NM Rules
File

XSB
Knowledge

Base

Query
Answering

Tables

Tracer/
Debugger

NoHR
Query Tab

Translator

Ontology

NM Rules

Protégé
Ontology

NM Rules
Base

Fig. 1. System architecture of NoHR

a value for X , would allow us to derive q2. However, neither of the two atoms ap-
pear in a rule head in P , so we will never be able to derive it from P . In fact, the
only proper answer the oracle may return is q4 = SeaSideCity(Barcelona). From the
corresponding rule in P we obtain two new queries q5 = PortCity(Barcelona) and
q6 = not NonSeaSideCity(Barcelona). Then, q5 can be derived from O alone, and
q6 succeeds, because NonSeaSideCity(Barcelona) fails. So q4 succeeds, and therefore
also q2. Finally q3 succeeds since RainyCity(Barcelona) fails, so q1 is true.

3 System Description

In this section, we briefly describe the architecture of the plug-in for Protégé as shown
in Fig. 1 and discuss some features of the implementation and how querying is realized.

The input for the plug-in consists of an OWL file in the DL EL+
⊥ or DL-LiteR as

described in Sect. 2.1, which can be manipulated as usual in Protégé, and a rule file. For
the latter, we provide a tab called NoHR Rules that allows us to load, save and edit rule
files in a text panel following standard Prolog conventions.

The NoHR Query tab also allows for the visualization of the rules, but its main pur-
pose is to provide an interface for querying the combined KB. Whenever the first query
is posed by pushing “Execute”, a switch determines the profile of the ontology, upon
which the translator is started. For EL+

⊥, the ontology reasoner ELK [17], tailored for
EL+
⊥ and considerably faster than other reasoners when comparing classification time,

is used to classify the ontology O. The inferred axioms together with O are translated
discarding certain axioms which are irrelevant for answering ground queries. For DL-
LiteR, a dedicated direct translation without prior classification is used, introducing
some auxiliary predicates instead to compensate for the missing inferred axioms (see
[14] and [9] for the respective details on both approaches). In both cases, the translation
result is joined with the given non-monotonic rules in P , which is further transformed
if inconsistency detection is required (in the presence of certain DL constructs in the
ontology, such as DisjointWith axioms).

The result is used as input for the top-down query engine XSB Prolog which realizes
the well-founded semantics for logic programs [11], and the transfer to XSB is realized

0!

10!

20!

30!

40!

50!

60!

0! 44! 88! 132! 176! 220! 264! 308! 352! 396! 440!

Ti
m

e
(s

)!

NM Rules + Facts (×1000)!

ELK!
Translator!
XSB!

Fig. 2. Preprocessing time for SNOMED with a varying number of rules

via InterProlog,8 which is an open-source Java front-end allowing the communication
between Java and a Prolog engine.

Next, the query is sent via InterProlog to XSB, and answers are returned to the
query processor, which collects them and sets up a table showing for which variable
substitutions we obtain true, undefined, or inconsistent valuations (or just shows the
truth value for a ground query). XSB itself not only answers queries very efficiently in
a top-down manner, with tabling, it also avoids infinite loops.

Once the query has been answered, the user may pose other queries, and the system
will simply send them directly without any repeated preprocessing. If the user changes
data in the ontology or in the rules, then the system offers the option to recompile, but
always restricted to the part that actually changed.

4 Evaluation

Tests on the EL+
⊥ component alone already have shown that a) different EL ontologies

can be preprocessed for querying in a short period of time (around one minute for
SNOMED CT with over 300,000 concepts), b) adding rules increases the time of the
translation only linearly, and c) querying time is in general neglectable, in comparison to
a) and b) [14]. Fig. 2 visualizes the results from b) showing that the times for processing
of files and ELK is basically independent of the number of added rules, and that the time
of translator and XSB only grows linearly on the number of rules, with a small degree.

In subsequent tests on improved versions of both components (for EL+
⊥ and DL-

LiteR) [9], we have shown that i) our system scales reasonably well for OWL QL query
answering without non-monotonic rules (only slowing down for memory-intensive cases),
ii) preprocessing is even faster when compared to NoHR’s previous version using a clas-
sifier (for EL), which was already capable of preprocessing large ontologies in a short

8 http://interprolog.com/java-bridge/

http://interprolog.com/java-bridge/

0

100

200

300

400

1 5 10 15 20 1 5 10 15 20

Ti
m

e
(s

)

EL - LUBM QL - LUBM

XSB Processing

Ontology Processing

Initialization

Fig. 3. Preprocessing time for LUBM for the two translation modes

period of time, iii) querying scales well, even for over a million facts/assertions in the
ABox, despite being slightly slower on average in comparison to EL, and iv) adding
rules scales linearly for pre-processing and querying, even for an ontology with many
negative inclusions (for DL-LiteR).

Fig. 3 shows the results for ii) where we considered LUBM9 [12], a standard bench-
mark for evaluating queries over a large data set, which also includes a given set of
standard queries. We created instances of LUBMn with n = 1, 5, 10, 15, 20 using the
provided generator, and a restricted version of LUBM which fits both OWL EL and QL
(thus only rendering a few of the standard queries meaningless), with the number of
assertions ranging from roughly 100,000 to over 2,700,000. Note that “Initialization”
includes loading the ontology and for EL also classifying it, “Ontology Processing”
includes the actual translation, and “XSB Processing” the writing of the rule file and
loading it in XSB. We observe that QL is considerably faster, indeed up to 80s for
LUBM20, which is to a considerable extent due to avoiding classification and a smaller
rule file being created. This is compensated when querying as the DL-LiteR approach
is slightly slower on average, and it thus seems that deciding which of the two forms of
translation performs better depends on the kind (and number) of queries we pose.

5 Conclusions

The Protégé plugin NoHR – also distributed as an API – affords us the possibility to
query knowledge bases composed of both an ontology in OWL 2 EL or QL and a set
of non-monotonic rules, using a top-down reasoning approach, which means that only
the part of the ontology and rules that is relevant for the query is actually evaluated.
Its sound theoretical foundation together with the fast interactive response times make
NoHR a truly one-of-a-kind reasoner.

Extending NoHR to the third profile – OWL 2 RL – seems an obvious next step,
although developing an alternative for OWL 2 QL using the classifier integrated in on-
top [20] or even the general reasoner Konclude [27], could shed more light on whether

9 http://swat.cse.lehigh.edu/projects/lubm/

http://swat.cse.lehigh.edu/projects/lubm/

classification or direct translation fares better for proper OWL 2 QL ontologies. The
efficiency of the latter reasoner also motivates looking into non-polynomial DLs, with
possible influences from recent work on rewriting disjunctive datalog programs [15].
Adjusting NoHR to the paraconsistent semantics for MKNF knowledge bases of [16]
would provide better support to the already observed paraconsistent behavior.

Acknowledgments. We would like to acknowledge the valuable contribution of both
Nuno Costa and Vadim Ivanov to the development of NoHR. This work was partially
supported by Fundação para a Ciência e a Tecnologia (FCT) under strategic project
PEst/UID/CEC/04516/2013, and grant SFRH/BPD/86970/2012 (M. Knorr).

References

1. Alberti, M., Knorr, M., Gomes, A.S., Leite, J., Gonçalves, R., Slota, M.: Normative systems
require hybrid knowledge bases. In: Procs. of AAMAS. pp. 1425–1426. IFAAMAS (2012)

2. Alferes, J.J., Knorr, M., Swift, T.: Query-driven procedures for hybrid MKNF knowledge
bases. ACM Trans. Comput. Log. 14(2), 1–43 (2013)

3. Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: The DL-Lite family and
relations. J. Artif. Intell. Res. (JAIR) 36, 1–69 (2009)

4. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The
Description Logic Handbook: Theory, Implementation, and Applications. Cambridge Uni-
versity Press, 3rd edn. (2010)

5. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: Kaelbling, L.P., Saffiotti, A.
(eds.) Procs. of IJCAI. pp. 364–369. Professional Book Center (2005)

6. Baral, C., Gelfond, M.: Logic programming and knowledge representation. J. Log. Program.
19/20, 73–148 (1994)

7. Calvanese, D., de Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning
and efficient query answering in description logics: The DL-Lite family. Journal of Auto-
mated Reasoning 39(3), 385–429 (2007)

8. Chen, W., Warren, D.S.: Tabled Evaluation with Delaying for General Logic Programs.
J. ACM 43(1), 20–74 (1996)

9. Costa, N., Knorr, M., Leite, J.: Next step for NoHR: OWL 2 QL. In: Arenas, M., Corcho, O.,
et al. (eds.) Procs. of ISWC. LNCS, vol. 9366, pp. 569–586. Springer (2015)

10. Eiter, T., Ianni, G., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining answer set
programming with description logics for the semantic web. Artif. Intell. 172(12-13), 1495–
1539 (2008)

11. Gelder, A.V., Ross, K.A., Schlipf, J.S.: The well-founded semantics for general logic pro-
grams. J. ACM 38(3), 620–650 (1991)

12. Guo, Y., Pan, Z., Heflin, J.: LUBM: A benchmark for OWL knowledge base systems. J. Web
Sem. 3(2-3), 158–182 (2005)

13. Hitzler, P., Krötzsch, M., Parsia, B., Patel-Schneider, P.F., Rudolph, S. (eds.): OWL 2 Web
Ontology Language: Primer (Second Edition). W3C Recommendation 11 December 2012
(2012), available from http://www.w3.org/TR/owl2-primer/

14. Ivanov, V., Knorr, M., Leite, J.: A query tool for EL with non-monotonic rules. In: Alani, H.,
et al. (eds.) Procs. of ISWC. LNCS, vol. 8218, pp. 216–231. Springer (2013)

15. Kaminski, M., Nenov, Y., Grau, B.C.: Datalog rewritability of disjunctive datalog programs
and its applications to ontology reasoning. In: Brodley, C.E., Stone, P. (eds.) Procs. of AAAI.
pp. 1077–1083. AAAI Press (2014)

16. Kaminski, T., Knorr, M., Leite, J.: Efficient paraconsistent reasoning with ontologies and
rules. In: Yang, Q., Wooldridge, M. (eds.) Procs. of IJCAI. IJCAI/AAAI (2015)

17. Kazakov, Y., Krötzsch, M., Simančı́k, F.: The incredible ELK: From polynomial procedures
to efficient reasoning with EL ontologies. Journal of Automated Reasoning 53, 1–61 (2013)

18. Kifer, M., Boley, H. (eds.): RIF Overview (Second Edition). W3C Working Group Note 5
February 2013 (2013), available at http://www.w3.org/TR/rif-overview/

19. Knorr, M., Alferes, J.J., Hitzler, P.: Local closed world reasoning with description logics
under the well-founded semantics. Artif. Intell. 175(9–10), 1528–1554 (2011)

20. Kontchakov, R., Rezk, M., Rodriguez-Muro, M., Xiao, G., Zakharyaschev, M.: Answering
SPARQL queries over databases under OWL 2 QL entailment regime. In: Mika, P., et al.
(eds.) Procs. of ISWC. LNCS, vol. 8796, pp. 552–567. Springer (2014)

21. Lifschitz, V.: Nonmonotonic databases and epistemic queries. In: Mylopoulos, J., Reiter, R.
(eds.) Procs. of IJCAI. pp. 381–386. Morgan Kaufmann (1991)

22. Motik, B., Cuenca Grau, B., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C. (eds.): OWL 2 Web
Ontology Language: Profiles (Second Edition). W3C Recommendation 11 December 2012
(2012), available at http://www.w3.org/TR/owl2-profiles/

23. Motik, B., Rosati, R.: Reconciling description logics and rules. J. ACM 57(5), 93–154 (2010)
24. Patel, C., Cimino, J.J., Dolby, J., Fokoue, A., Kalyanpur, A., Kershenbaum, A., Ma, L.,

Schonberg, E., Srinivas, K.: Matching patient records to clinical trials using ontologies. In:
Aberer, K., et al. (eds.) Procs. of ISWC. LNCS, vol. 4825, pp. 816–829. Springer (2007)

25. Slota, M., Leite, J., Swift, T.: Splitting and updating hybrid knowledge bases. TPLP 11(4-5),
801–819 (2011)

26. Slota, M., Leite, J., Swift, T.: On updates of hybrid knowledge bases composed of ontologies
and rules. Artif. Intell. 229, 33–104 (2015)

27. Steigmiller, A., Liebig, T., Glimm, B.: Konclude: System description. J. Web Sem. 27, 78–85
(2014)

	NoHR: A Protégé Plugin for Polynomial Querying of Ontologies and Non-Monotonic Rules

