OOASP: Connecting Object-oriented and Logic
Programming*

Andreas Falkner!, Anna Ryabokon?, Gottfried Schenner!, and Kostyantyn
Shchekotykhin?

I Siemens AG Osterreich, Vienna, Austria,
andreas.a.falkner @siemens.com gottfried.schenner @siemens.com
2 Alpen-Adria-Universitit Klagenfurt, Austria,
anna.ryabokon @aau.at kostyantyn.shchekotykhin @aau.at

Abstract

Most of contemporary software systems are implemented using an object-
oriented approach. Modeling phases — during which software engineers spec-
ify requirements to the future system using some modeling language — are an
important part of the development process, since modeling errors are often
hard to recognize and correct. OOASP framework tries to solve the problem
by embedding Answer Set Programming into the object-oriented software
development process. Preliminary results of the OOASP application in CSL
Studio, which is an internal modeling environment of Siemens for product
configurators, show that it can be used as a lightweight approach to verify,
create and transform instantiations of object models at runtime and to support
the software development process during design and testing.

1 System overview

Object-oriented programming languages are de facto standard for software devel-
opment. In practice of Siemens the object-oriented approach is used in many do-
mains among which development of product configurators is one of the prominent
examples. A configurator is a software system that enables the design of com-
plex technical systems or services based on a predefined set of components. In
modern configuration systems, domain knowledge - comprising configuration re-
quirements (product variability) and customer requirements - is expressed in terms
of component types and relations between them. Each type is characterized by
a set of attributes which specify functional and technical properties of real-world
and abstract components of a configurable product. An attribute takes values from

*This research was funded by the Austrian Research Promotion Agency (grant number 840242),
Carinthian Science Fund (grant number KWF-3520/26767/38701) and Austrian Science Fund (grant
number I 2144 N-15)

a predefined domain. Furthermore, components can be related/connected to each
other in various ways.

Siemens experience in the development of industrial configurator applications
shows that quite often incorrect models are responsible for faults in software arti-
facts [6]. It is difficult to get models right in the first place due to unexpected effects
of development decisions. To solve this problem we suggest the OOASP approach
which allows to analyze object-oriented software models and their instances by
means of ASP. In particular, we consider models which can be described by a mod-
eling language corresponding to a UML class diagram [13]. The latter is a language
allowing a software developer to specify an object model and additional constraints
that each valid instantiation of an object model must satisfy. OOASP was imple-
mented as a potential extension to any object-oriented modeling environment and
its practicability was evaluated together with CSL Studio [3] which is a Siemens
internal tool for the design of product configurators based on the methodology of
Generative Constraint Satisfaction Problems (GCSPs) [7, 17]. CSL (Configura-
tion Specification Language) is a formal modeling language based on a standard
object-oriented meta-model similar to Ecore' or MOF?. It provides all state-of-the-
art features such as packages, interfaces, enumerations, classes with attributes of
various types, associations between classes, inheritance and aggregation relations
as well as integrity constraints for subtypes and cardinalities of associations. In
addition, it offers reasoning methods such as rules and constraints which are not
(yet) automatically mapped to OOASP and therefore are not covered in this work.

In OOASP, all concepts of one or multiple software models as well as their in-
stantiations are represented in terms of the Domain Description Language (DDL).
An OOASP-DDL program comprises facts encoding the object-oriented classes,
attributes, associations and integrity constraints (see Section 2). In order to rea-
son about a software model specified in DDL, OOASP framework uses a meta-
programming approach [16] which was successfully applied in a similar way, for
instance, to debugging of ASP programs [9, 12]. In case of OOASP a meta-
program corresponds to a set of normal rules and/or their extensions, such as choice
rules (see e.g. [1, 4, 10, 14] for an introduction to ASP). In a standard OOASP im-
plementation we provide meta-programs accomplishing the following tasks>:

Validation Given an OOASP-DDL program describing an object-oriented model
and its instantiation, a validation meta-program verifies whether all integrity
and domain-specific constraints hold. The integrity constraints encode model
requirements to relations between objects of an instantiation and are derived
from the given model automatically. The domain-specific constraints ensure
that some specific requirements to an instantiation of a model are satisfied.
They can either be directly specified in the meta-program or imported from
other languages. For instance, one could import domain-specific constraints

'Eclipse Modeling Framework https://www.eclipse.org/modeling/emf/
2MetaObject Facility http://www.omg.org/mof/
300ASP code and encodings are available upon request from the first author.

defined in Object Constraint Language* (OCL), for which transformations
to SAT [15] and constraints programming [2] exist.

Completion Given an OOASP-DDL program describing an object-oriented model
and its (partial) instantiation (where an empty instantiation can be seen as a
special case) the completion task is to find an extension of the instantiation
that satisfies all constraints or to show that such extension does not exist. The
latter may occur due to two main reasons: (i) the object-oriented model or the
given (partial) instantiation are inconsistent and do not have a completion;
and (ii) the extension of the given instantiation requires the creation of a
number of objects that exceeds a given upper bounds for object instances.
This bounding is necessary for reducing the search space to a manageable
size and relies on the assumption that a solution using a sufficiently small
number of constants exists - similar to the notion of a scope in Alloy [11].

Reconciliation Given an OOASP-DDL program describing a legacy instantiation
of an outdated object-oriented model, a new up-to-date model and a set of
transformation rules, the goal of the reconciliation is to find a possibly pre-
ferred set of changes required to transform the legacy instantiation to a valid
instantiation of the new model. The preferences in OOASP can be defined
with domain-specific costs that assess the costs of required changes such as
creation, reuse or disposal (deletion) of object instances.

If advanced features such as multiple inheritance, symmetry breaking, etc., are
required, the default ASP encodings of reasoning tasks, outlined in this paper,
must be replaced with alternative encodings, whereas the OOASP-DDL program
remains the same.

A typical workflow of the product configurator development process in CSL
Studio and OOASP is depicted in Figure 1. The development starts with the cre-
ation of an initial configuration model and the definition of domain-specific con-
straints in CSL. Model and constraints are then transformed into JCOS format and
are embedded into the configuration application. The latter implements the Graphi-
cal User Interface (GUI) and provides reasoning services by means of a generative
constraint solver JCOS [17, 7]. On every stage of the configurator development
process the application is tested for correctness. The testing process starts with the
definition of instances in CSL Studio. After importing them into the JCOS solver,
a tester uses the GUI to check functionality of the application. The results of these
tests can be exported from the application back to CSL Studio and be used to ex-
tend the existing test instances. In addition, the model and test instances can be
exported to OOASP. The export procedure generates all necessary DDL definitions
automatically. The domain-specific constraints of CSL, however, have to be re-
implemented by the developer in ASP. This redundancy allows the framework to
increase the probability of finding faults in domain-specific constraints, which are
among the most error-prone parts of a configuration application.

*OCL specification is available from http://www.omg.org/spec/OCL/2.4/PDF/

Tester

tests Q edits

Application CSL Studio OOASP

v
GEJ @ cul 8 ASPE;(:/(ZES::
) A 4
I e i L

| [| [| |
%D I\/chfc?esl ‘export Model EXport> Mc?cli::eLl
é COﬂS'Cff':\(i:f?'fz Constraints Constrali)nDtI;

7 X

implements implements

Developer

Figure 1: Integration of OOASP in the development of product configurators

In general, OOASP can be used together with any UML/OCL based frame-
work. The ”CSL Studio” in Figure 1 would be replaced with another modeling en-
vironment and/or the ”Application” with another runtime environment and solver.
For verification and test of the model including the constraint implementation, we
see the following approaches (see Section 4 for more details and examples):

e Verify the consistency of the whole model (existence of at least one in-
stance): Execute the completion task with an empty instantiation.

e Verify the correctness of domain-specific constraints: Define appropriate
(partial) instantiations and compare the results of application and OOASP.
If the OOASP constraints are automatically translated from the model (i.e.
no diverse redundance) then the expected truth value must additionally be
given.

e Verify the checking capabilities of the application: In the application, cre-
ate positive and negative test instances (product configurations) and execute
OOASP validation task to cross-check whether the positive configurations
are valid instantiations of the model, while the negative ones are not.

e Verify the generation capabilities of the application, e.g. adding missing
components and connecting them to components existing in the partial con-
figuration: Define partial instantiations, execute both application and OOASP
completion task on them and compare the results. Typically, the application
will have implemented some heuristics (necessary for solving large prob-
lem instances) which can thus be tested on examples sufficiently small for
OOASP complete solving.

e Verify the repair capabilities of the application: If the software developer
(tester) manipulates a completed configuration, for instance, by adding or
removing components, OOASP can help to restore consistency through the
reconciliation task. It finds a set of changes that keeps as much of the existing
structure of the configured system as possible.

2 OOASP Domain Description Language

OOASP-DDL allows a software developer to define all standard concepts of object-
oriented models such as classes, attributes and associations. Each concept of the
model is translated to a corresponding OOASP-DDL atom, where each term Id,
is an identifier of a model, class, attribute, etc. In OOASP identifiers of models
are globally unique, whereas all other identifiers are unique within a model. In the
current version, OOASP-DDL supports the definitions presented in Table 1. These
definitions are sufficient to describe a subset of the object-oriented model of pro-
gramming languages such as C++, Java, etc. Many features that can additionally
be found in object-oriented models, e.g. initial values, constants, multi-valued at-
tributes, ordered associations, etc., are currently not supported by the framework.
This is because our main purpose was to provide a lightweight approach that, how-
ever, is able to capture most of the features commonly used in practice. The
definition of an instantiation of an object-oriented model is done using OOASP-
DDL in a similar way as the definition of the model. In particular, our language
allows the definitions shown in Table 2.

Note that, OOASP-DDL is designed in a way to allow the definition of multi-
ple models and their instantiation in one ASP program. This provides the neces-
sary support for reconciliation and similar reasoning tasks that are applied to many
models and/or their instantiations at once.

3 Definition of constraints

Constraints allow a software developer to ensure that models and their instanti-
ations are valid. In OOASP we support two types of constraints: integrity con-
straints and domain-specific constraints. The latter are used to verify some specific
properties of a model and/or its instantiations. The definition of domain-specific

ooasp_class(Id y, Id o) defines a class C in a model M

ooasp_subclass(Idyr, Id ¢, Idsc) defines a subclass relation between a
class C and a super class SC in a
model M

ooasp-assoc(Idyr, Id 4, Idc,, Minc,, defines an association relation A be-
Mazc,, Ildc,, Minc,, Mazc,) tween classes C and C with the given
cardinalities, e.g. for every instance of
the class C'y atleast Minc, and at most
Mazc, instances of the class Cy must

be associated

ooasp_attribute(Ild s, Id ¢, Id a7, defines an attribute AT of a class C
{“string”, “integer”, “boolean”}) with one of the three possible types

ooasp_attribute_minInclusive(ldyr, provides an optional minimum value

Ide, Idar, MinV) MinV for an integer attribute AT
ooasp_attribute_maxInclusive(ldys, provides an optional maximum MazV
Ido, Id a7, MaxV) for an integer attribute AT
ooasp_attribute_enum/(Id yy, defines a possible value Val for a string
Ido, Id a7, Val) attribute AT

Table 1: OOASP-DDL definitions for the encoding of models

constraints can be done by a developer directly in OOASP-DDL or — if that trans-
formation is available — by importing them from the input model, e.g. OCL con-
straints from a UML model. The integrity constraints, however, are included in the
default OOASP implementation and capture the requirements of the input object-
oriented model such as cardinality restrictions, typing, etc. For instance, in order
to ensure that a minimal cardinality requirement of an association relation holds in
a given instantiation, OOASP framework comprises the following rule’:

ooasp_cv(I,mincardviolated(01,A)) :-
{ooasp_associated(I,A,01,02): ooasp_isa(I,C2,02)} C2MIN-1,
C2MIN>0,
ooasp_assoc(M,A,C1,CIMIN,C1MAX,C2,C2MIN,C2MAX) ,
ooasp_instantiation(M,I),
ooasp_isa(I,C1,01).

The presence of an atom over ooasp_cv predicate in an answer set of an OOASP
program indicates that the corresponding integrity constraint is violated by the
given instantiation. In the sample rule above, the error atom is derived when-
ever less objects of type Co are associated with object O; than required by the

>In our examples we use the gringo [8] dialect of ASP that also allows usage of uninterpreted
function symbols such as mincardviolated.

ooasp_instantiation(Id s, Idy) defines an instantiation / of a model M

ooasp-isa(ldr,Idc, Ido) declares that an object O is an instance
of the class C' in instantiation
ooasp-associated(Idy, Id 4, connects objects 07 and Oy via the as-
Ido,,1do,) sociation relation A

ooasp_attribute_value(Idy, Id o7, assigns a value Val to an attribute AT
Id o, Val) of an object O

Table 2: OOASP-DDL definitions for the encoding of instantiations

cardinality restriction of the association.

4 OOASP tasks

In this section we consider OOASP tasks listed in Section 1 in more detail. Assume
a developer programs a simple hardware configuration problem shown in Figure 2.
The sample model describes a product configuration problem as a UML class dia-
gram. In this problem the hardware product consists of a number of Frames. Each
frame contains up to five Modules of types ModuleA or ModuleB, where each mod-
ule occupies exactly one of the 5 positions in a frame. Moreover, each module has
exactly one Element assigned to it. All elements are of one of two types ElementA
or ElementB. The corresponding OOASP-DDL encoding for this example is au-
tomatically generated by CSL Studio. A part of the encoding excluding integrity
constraints is shown in Listing 1.

Additionally to the integrity constraints, implied by the cardinalities of associ-
ations shown on the UML diagram, there are the following domain-specific con-
straints:

e Elements of type ElementA require a module of type ModuleA

e Elements of type ElementB require a module of type ModuleB

e Modules must occupy different positions in a frame
These constraints can easily be implemented in OOASP. For instance, the first and
the third can be formulated as shown in Listing 2.
4.1 Validation of a configuration

The implementation of an object-oriented software requires continuous testing in
order to identify and resolve faults early. The validation reasoning task provided by
OOASP allows a software developer to verify whether an instantiation generated by
the object-oriented code is consistent. Especially, the validation is important in the
context of CSL Studio or similar systems while testing domain-specific constraints.

File Edit MNavigate Search Project Window Help
o~ [~ Fr F-F e eror s 4
B8 CsLworkspace 52| = O || 2] hwnest 12 = 0O ||l diagram1 52 = o
QeE = package hw; - 4
. & Comp: bikel
4 & Comp: example_modules - class HuObject {
a [B] hw
H hw
© HwObject = class Frame extends HwObject {
@ Frame assoc modules[@..5]: Module; e
& Module ¥
© ModuleA
® ModuleB *l:lass Module extends HwObject {
© Element assoc element[1]: Element; 7
@ Elementa assoc frame[1]: Frame oppositeOf module =
@ ElementB attr position: Int(min=1,max=5); 1
[E] diagraml ¥ _
- & Comp: lightl 1 | medule
. &1 Comp: light2 = class ModuleA extends Module {
= constraint correctElement {
assert element instanceof Elementh; slement | © ElementA

¥
¥

@ Element K]

£ hw
@ ElementB
~class ModuleB extends Module { -

1 [» l [r

Figure 2: CSL screenshot for the Modules example

In CSL Studio an instantiation of the object model provided by the developer is
exported to OOASP and the validation meta-program is executed. The resulting
answer set shows the violated requirements which inhibit a valid configuration.
Thus, the developer can identify the faults in the software in a shorter period of
time.

For instance, assume a software developer designed a model in CSL Studio and
the corresponding JCOS application outputs an instantiation ct comprising only
one element of type ElementA. CSL Studio forwards this instantiation to OOASP
which translates it to the OOASP-DDL program:

ooasp-isa("cl1","ElementA",10).
For this input, execution of the validation task returns an answer set comprising:
ooasp_cv("cl",mincardviolated(10,"Element _module"))

This atom indicates that cardinality restrictions of the association between Element
and Module classes are violated. The reason is that for the object with identifier 10
there is no corresponding object of the Module type.

Note that in the current OOASP prototype domain-specific constraints must be
coded by a software developer manually and are not generated from the CSL con-
straint language. However, this behavior was found to be advantageous in practice,
since it provides a mechanism for the diverse redundance [5]. The latter refers to
the engineering principle that suggests application of two or more systems. These
systems are built using different algorithms, design methodology, etc., to perform
the same task. The main benefit of the diverse redundance is that it allows soft-
ware developers to find hidden faults caused by design flaws which are usually

/% modules example kb "v1"

% classes

ooasp_class("v1","HwObject").

ooasp_class("v1","Frame") .

ooasp_class("v1l","Module") .

ooasp_class("v1","ModuleA"). ooasp_class("v1i","ModuleB").
ooasp_class("v1l","Element") .

ooasp_class("v1l","ElementA"). ocoasp_class("vl","ElementB").

7 class inheritance
ooasp_subclass("v1l","Frame", "HwObject") .
ooasp_subclass("v1","Module", "HwObject") .
ooasp_subclass("v1","Element","HwObject") .
ooasp_subclass("v1l","ElementA","Element") .
ooasp_subclass("v1l","ElementB","Element") .
ooasp_subclass("v1l","ModuleA", "Module") .
ooasp_subclass("v1","ModuleB", "Module") .

/ attributes and associations
/4 class Frame
ooasp_assoc("v1l","Frame_modules","Frame",1,1,"Module",0,5).

7/ class Module
ooasp_attribute("v1","Module","position","integer").
ooasp_attribute_minInclusive("v1","Module","position",1).
ooasp_attribute_maxInclusive("v1","Module","position",5).

/ class Element
ooasp_assoc("v1l","Element_module","Element",1,1,"Module",1,1).

Listing 1: OOASP-DDL encoding of the Modules example shown in Figure 2

hard to detect. Generally, we found that software developers are able to formulate
domain-specific constraints in OOASP after a short training. However, existence
of ASP development environments supporting debugging and testing of ASP pro-
grams would greatly simplify this process.

4.2 Completion of an instantiation

The completion task is often applied in situations when a software developer needs
to generate a test case for a production system that outputs an invalid instantiation.
Thus, the completion task allows a developer to detect two types of problems: (i)
invalid partial instantiation and (ii) incomplete partial instantiation. In the last case,
the partial instantiation returned by a configurator can be extended to a valid one
by adding missing objects and/or relations between them. This indicates that the

1

2
3
4

5

1

ooasp_cv(I,module_element_violated(M1,E1)) :-
ooasp_instantiation(M,I),
ooasp_associated(I,"Element_module" ,M1,E1),
ooasp_isa(I,"ElementA",E1),
not ooasp_isa(I,"ModuleA" ,M1).

ooasp_cv(I,alldiffviolated(M1,M2,F)) :-

ooasp_instantiation(M,I),
ooasp_isa(I,"Module" ,M1),
ooasp_isa(I,"Module",M2),
ooasp_attribute_value(I,"position",M1,P),
ooasp_attribute_value(I,"position",M2,P),
ooasp_associated(I,"Frame_modules",F,M1),
ooasp_associated(I,"Frame_modules",F,M2),
M1 !'= M2.

Listing 2: Sample domain-specific constraints in OOASP

already implemented production system works correctly, at least for the given in-
put, but it is incomplete. The developer can export the obtained solution and use
it as a test case during subsequent implementation of the system. If the problem
of the first type is found, then we have to differentiate between two causes of this
problem: (a) the model designed in CSL Studio is inconsistent; and (b) the system
returned a partial instantiation that is faulty, i.e. cannot be extended to a valid so-
lution. The first cause can easily be detected by running a completion task with
an empty instantiation. If the model is consistent, then manually coded additional
constraints of the production system are faulty and the software developer has to
correct them.

In order to execute the completion task the CSL Studio exports an instantiation
obtained by an object-oriented system to OOASP-DDL. Then, this instantiation
together with the completion meta-program is provided to an ASP solver. The
returned answer sets are visualized by the system to the software developer. If
needed, the developer can export the found complete instantiation to an instantia-
tion of the object-oriented system. This translation is straight-forward due to the
one-to-one correspondence between instances on the OOASP-level and the object-
oriented system. The completed configuration can either be used for further tests
in the object-oriented application or just be compared to the result of the same
completion action in an automated test.

Consider the following example in which a partially implemented configura-
tion system returns an instantiation containing three instances of ElementA and two
instances of ElementB.

% Partial configuration

> ooasp_instantiation("v1i","c2").

10

3 ooasp_isa("c2","ElementA",10). ooasp_isa("c2","ElementA",11).
4 ooasp_isa("c2","ElementA",12).
5 ooasp_isa("c2","ElementB",13). ooasp_isa("c2","ElementB",14).

In this case the completion task returns a solution visualized in Figure 3. This
solution comprises the existing objects with identifiers 10 — 14 as well as the new
objects corresponding to a frame with object identifier 30 and five modules 20 — 24.

Frame (30)

Module A| [Module A| | Module A| | Module B| [Module B
(20) (21) (22) (23) (24)

Figure 3: Complete instantiation for the Modules example. The objects existing in
the input instantiation are shown in gray.

4.3 Reconciliation of an inconsistent instantiation

The reconciliation task deals with restoring consistency of an inconsistent (partial)
instantiation given as an input. The problem arises in three scenarios: (1) the
validation task finds an instantiation inconsistent; (2) the completion task detects
that a model is consistent, but the given partial instantiation cannot be extended
to a complete one; and (3) the model is changed due to new requirements to a
configurable product. In order to restore the consistency of an instantiation the
reconciliation task comprises two meta-programs.

The first meta-program converts the input OOASP-DDL program into a reified
form. This program comprises rules of the form:

ooasp_instantiation(M, Iney).
fact(ooasp(1,t)) :-ooasp(I,t).

where ooasp(I,t) stands for one of the OOASP-DDL atoms, listed in Table 2, ex-
cept ooasp_instantiation. Thus we avoid collisions with previous instantiations
1 stored in the input DDL program. Instead we generate a fact describing a new
instance of a model with a unique identifier [,,¢,,.

The second meta-program takes the output of the first one as an input and
computes a consistent instantiation as well as a set of changes applied to obtain
it. The set of changes is obtained by the application of deletion/reuse rules of the

11

form:

1{reuse(ooasp(1,t)), delete(ooasp(I,t))}1 - fact(ooasp(I,t)).

00a8p(Inew, t) :- reuse(ooasp(I, t)), ooasp_instantiation(M, Iney).

A preferred solution can be found if a developer provides costs for reuse/delete
actions performed by the reconciliation task.

For example, suppose that the developer created a configuration system that
does not implement a domain-specific constraint preventing overheating of the
system. Namely, this constraint avoids overheating by disallowing putting two
modules of type ModuleA next to each other.

1 /4 do mot put 2 modules of type Moduled next to each other

> ooasp_cv(IID,moduleANextToOther (M1,M2,P1,P2)):~

3 ooasp_instantiation("v2",IID),
4 ooasp_associated(IID,"Frame_modules",F,M1),
5 ooasp_associated(IID,"Frame_modules",F,M2),

¢ ooasp_attribute_value(IID,"position",M1,P1),
7 ooasp_attribute_value(IID,"position",M2,P2),

s M1!=M2,

9 ooasp_isa(IID,"ModuleA" ,M1),
10 ooasp_isa(IID,"ModuleA",M2),

1 P2=P1+1.

Due to the added constraint, the instantiation in Figure 3 is no longer valid. The
reconciliation task finds a required change by modifying the positions of modules
with identifiers 21 and 24. The result of the reconciliation can be presented to a

developer by OOASP framework as shown in Figure 4.

Frame (30)

Module A
(20)

Module B
(24)

Module A
(22)

Element A Element B
(10) (14)

Module B
(23)

Element B
(13)

Module A
(21)

Figure 4: Reconciled configuration for the Modules example

References

[1] Gerhard Brewka, Thomas FEiter, and Miroslaw Truszczynski. Answer set pro-
gramming at a glance. Communications of the ACM, 54(12):92-103, 2011.

12

[2] J. Cabot, R. Clariso, and D. Riera. Verification of UML/OCL Class Dia-
grams using Constraint Programming. In IEEE International Conference on
Software Testing Verification and Validation Workshop, pages 73-80, 2008.

[3] Deepak Dhungana, Andreas A. Falkner, and Alois Haselbock. Generation of
conjoint domain models for system-of-systems. In Generative Programming:
Concepts and Experiences, pages 159-168, 2013.

[4] Thomas Eiter, Giovambattista Ianni, and Thomas Krennwallner. Answer set
programming: A primer. In Reasoning Web, pages 40-110, 2009.

[5] A. Falkner, G. Schenner, G. Friedrich, and A. Ryabokon. Testing Object-
Oriented Configurators With ASP. In ECAI Workshop on Configuration,
pages 21-26, 2012.

[6] Andreas Falkner and Alois Haselbock. Challenges of Knowledge Evolution
in Practice. AI Communications, 26:3—14, 2013.

[7] Gerhard Fleischanderl, Gerhard Friedrich, Alois Haselbock, Herwig
Schreiner, and Markus Stumptner. Configuring large systems using gener-
ative constraint satisfaction. IEEE Intelligent Systems, 13(4):59-68, 1998.

[8] Martin Gebser, Roland Kaminski, Arne Konig, and Torsten Schaub. Ad-
vances in Gringo Series 3. In Proceedings of the LPNMR, pages 345-351,
2011.

[9] Martin Gebser, Jorg Piihrer, Torsten Schaub, and Hans Tompits. A meta-
programming technique for debugging answer-set programs. In AAAI, pages
448-453, 2008.

[10] Michael Gelfond and Vladimir Lifschitz. The stable model semantics for
logic programming. In 5th International Conference and Symposium on
Logic Programming, pages 1070-1080, 1988.

[11] D.Jackson. Software Abstractions: Logic, Language and Analysis. Mit Press,
2011.

[12] Johannes Oetsch, Jorg Piihrer, and Hans Tompits. Catching the Ouroboros:
On Debugging Non-ground Answer-Set Programs. Theory and Practice of
Logic Programming, 10(4-6):2010, 2010.

[13] James Rumbaugh, Ivar Jacobson, and Grady Booch. The Unified Modeling
Language Reference Manual. Addison-Wesley, 2 edition, 2005.

[14] Patrik Simons, Ilkka Niemel4, and Timo Soininen. Extending and implement-
ing the stable model semantics. Artificial Intelligence, 138:181-234, 2002.

[15] Mathias Soeken, Robert Wille, Mirco Kuhlmann, Martin Gogolla, and Rolf
Drechsler. Verifying UML/OCL Models Using Boolean Satisfiability. In
Conference on Design, Automation and Test in Europe, pages 13411344,
2010.

[16] Leon S. Sterling and Ehud Y. Shapiro. The Art of Prolog: Advanced Pro-
gramming Techniques. MIT press, 1994.

[17] Markus Stumptner, Gerhard Friedrich, and Alois Haselbdck. Generative
constraint-based configuration of large technical systems. Al EDAM, pages
307-320, 1998.

13

