
What is the Semantics of Your SPARQL Extension??

Harald Beck, Minh Dao-Tran, and Thomas Eiter

Institute of Information Systems, Vienna University of Technology
Favoritenstraße 9-11, A-1040 Vienna, Austria
{beck,dao,eiter}@kr.tuwien.ac.at

Abstract. We argue for the importance of formal semantics for the exploration
and study of new SPARQL extensions; in particular, for RDF stream processing
(RSP). As an exemplary show case, we study the languages C-SPARQL and
CQELS, which are syntactically similar, but differ substantially in their seman-
tics. To express and compare their semantics in precise terms, we utilize the
logic-oriented framework LARS which offers a rule-based semantics similar to
Answer Set Programming. Moreover, we emphasize the need for theory to advance
language development on more rigorous grounds.

1 Introduction

The W3C recommendation for SPARQL demonstrates the community’s success in
reaching an agreement on a suitable query language for RDF data. By standardizing a
language, one also establishes a common ground for further extensions such as those for
querying and reasoning over streaming RDF data.

The well-known paper on the semantics and complexity of SPARQL [7] helped
to advance the progress in the development of SPARQL and its standardization by
providing a theoretical underpinning to precisely describe its formal semantics. This is
useful to clarify previous ambiguities, but also allows for the comparison and the mutual
inspiration with other approaches [9].

Nevertheless, similarly as SPARQL itself in its early days, extensions of SPARQL
nowadays seem to first avoid a rigorous approach. Often, the syntax is adapted to
informally describe the needs of a new use case, and according semantics are then given
informally or operationally. From a pure engineering point of view, this is valuable, since
certain new use cases can then be solved and empirically evaluated, e.g., with respect to
runtime performance. However, from a scientific point of view, an informal description
of the new system’s behaviour alone is not satisfactory for multiple reasons.

First, in case the actual output of an engine does not correspond with the user’s
intuition, there is no means to figure out the source of the discrepancy. How could would
one even define a bug without a specification, especially for corner cases?

Second, without formal definitions, the limits of a query language cannot be identified
clearly. A smart developer might be able to come up with a query to solve a difficult
use case. However, some queries might not be expressible at all with the given system.

? This research has been supported by the Austrian Science Fund (FWF) projects P24090, P26471,
and W1255-N23.

Only a formal semantics allows one to decide with certainty which queries cannot be
expressed. For those queries which can be expressed a formal analysis (e.g. complexity)
presupposes a formal definition.

Third, maybe even more important for the development of an established query
syntax, is the efficient evaluation by means of internal optimizations. Only when we
know which queries are equivalent, we can transform a given one into another one which
computes the same results, but may be evaluated faster.

Forth, your friend’s research group might have similar ideas and come up with their
own extension. All the new languages might look very similar but in fact express/compute
something quite different. What are the differences, and what exactly do they have
in common? How can we compare different approaches scientifically beyond vague
conceptual observations?

While the specific capabilities or difference between different languages and systems
might be intuitively clear for the expert, it would usually not be apparent to the novice
who is looking for the right tool for his job. Moreover, from a scientific point of view,
the landscape of knowledge can only be drawn with sharp lines if some formal language
is used.

In this note, we give an example how informal query semantics may be formalized
in a logic-oriented way, in order to analyze and compare them in precise terms. Similar
to [9], which translates (part of) SPARQL to Datalog with negation as failure, we express
RDF stream processing semantics in LARS [3], a logic-oriented framework for analyzing
reasoning over streams. LARS offers rule-based reasoning similar to Datalog and Answer
Set Programming. In particular, we show precisely that the syntactically very similar
RDF stream processing approaches of C-SPARQL [2] and CQELS [8] differ strongly in
their semantics.

2 RDF Stream Processing

RDF Stream Processing (RSP)1 can be intuitively seen as extending querying RDF
datasets with SPARQL to querying RDF streams with “continuous SPARQL.” We use
the following scenario to illustrate the above notions.

Illustrating scenario. The Sirius Cybernetics Corporation offers shop owners a real-
time geo-marketing solution (RTGM) to increase their sales. RTGM provides two
services: (i) an application that allows shop owners to push instantaneous discount
coupons to a server, and (ii) a free mobile App that fetches the coupons from shops
near the phone, matches them with the preferences specified in the user’s shopping
profile, and delivers the matched coupons to the user. Alice and Bob own shops a and b
that sell shoes and glasses, resp. At time point 10, Alice sends out a coupon for a 30%
discount for men’s MBT shoes. At time 15, Bob sends out a coupon for a 25% discount
on Ray-Ban glasses.

Claire has the App installed on her mobile phone and is walking near shops a and b
from time 18. She is neither interested in discounts on men’s products nor discounts of
less than 20%. Therefore, she will get only the discount from shop b.

1 https://www.w3.org/community/rsp/

2

Using RDF, information in the running scenario can be represented as RDF graphs,
i.e., set of triples of the form (subject , predicate, object) in Turtle format2 as follows:

G = { :mbt :g classify :1. :rayban : g classify :0. . . . }
g1 = {:a :offers :c1. :c1 :on :mbt. :c1 :reduce :30.}
g2 = {:b :offers :c2. :c2 :on :rayban. :c2 :reduce :25.}
g3 = {:claire :isNear :a. :claire :isNear :b.}

Here, triples in G represent the static dataset about products. The first triple says that
MBT shoes in the stores are men product and the second one means Ray-Ban glasses here
are for female. On the other hand, g1, g2 contains information regarding the discounts
pushed to RTGM at time 10 and 15, respectively, while triples in g3 inform the server
about the shops that Claire is near to at time 18.

Now assume that that product information is stored at <http://products>, and
triples in g1 ∪ g2 are collected at <http://coupons-snapshot>. The following
SPARQL query computes the relevant coupons for Claire at a single time point.

SELECT ?shop ?product ?percent
FROM <http://products> <http://coupons-snapshot>
WHERE { ?shop :offers ?coupon. ?coupon :reduce ?percent.

?product :g_classify ?gender. ?coupon :on ?product.
FILTER (?percent >= 20 && ?gender != 1) }

Q0: One-shot query expressed in SPARQL

This query only works on static data, that is, when triples in g1 ∪ g2 are stored at
<http://coupons-snapshot>. To be able to query streaming data as in the illus-
trating scenario, RSP was introduced. The RSP community is growing and one can
see several engines being developed in divergent approaches. We pick here the two
representative engines in RSP, namely C-SPARQL [2] and CQELS [8], to show the
differences.

Let us first talk about the data model of RSP. In principle, RSP augments the RDF
data model with the temporal aspect by associating incoming data (RDF graphs) with
timestamps. The community is discussing on a detail data model that allows different
types of timestamps to be attached with an RDF graph.3 For the purpose of illustrating
the divergence in RSP engines, we are safe to use a simple data model where RDF
streams can be seen as sequences of elements 〈g : [t]〉, where g is an RDF graph and t is
a timestamp, ordered by the timestamps.

On top of this data model, continuous queries are defined to be registered on a set
of input input streams and a background data, and continuously send out the answers
as new input arrives at the streams. There are two modes to execute such queries: In
pull-based mode, the system is scheduled to execute periodically independent of the
arrival of data and its incoming rate; in push-based mode, the execution is triggered
as soon as data is fed into the system. Continuous queries in C-SPARQL and CQELS
are inspired by the Continuous Query Language (CQL) [1]. As CQL is based on SQL,
the background data tables and input streams all have schemas. This makes it crystal

2 http://www.w3.org/TR/turtle/
3 https://github.com/streamreasoning/RSP-QL/blob/master/
Semantics.md

3

clear to see which input tuple comes from which stream. On the other hand, as RDF is
schema-less, it is not straightforward to get this distinction; RSP engines use different
approaches to build the snapshot datasets for R2R evaluation [5]:

– C-SPARQL merges snapshots of the input streams into the default graph,
– CQELS directly accesses the content of the input streams by introducing a new

“stream graph” pattern in the body of the query.

A continuous query to notify Claire with instantaneous coupons matching her preferences
can be expressed in C-SPARQL and CQELS as follows.4 For readability, we write
<coupons> instead of <http://coupons>, etc.

SELECT ?shop ?product ?percent
FROM <products>

STREAM <coupons> [RANGE 30m]
STREAM <locations> [RANGE 5m]

WHERE {
?shop :offers ?coupon.
?coupon :reduce ?percent.
?coupon :on ?product.
?user :isNear ?shop.
?product :g_classify ?gender.
FILTER
(?percent >= 20 && ?gender != 1)}

Q1: Notification query in C-SPARQL

SELECT ?shop ?product ?percent
FROM <products>
WHERE {
STREAM <coupons> [RANGE 30m] {

?shop :offers ?coupon.
?coupon :reduce ?percent.
?coupon :on ?product. }

STREAM <locations> [RANGE 5m] {
?user :isNear ?shop. }

?product :g_classify ?gender.
FILTER
(?percent >= 20 && ?gender != 1)}

Q2: Notification query in CQELS

Compared to Q0 in SPARQL, here we take into account the input stream regarding
the locations of the user. The FROM clause of Q1 now applies a window of range 30m
to a stream of coupons instead of fetching input from a static RDF graph. This means
that all streaming triples which arrived in the last 30 minutes will be considered for
querying. Similarly, a window for the last 5 minutes is applied on the stream of users’
locations. These windows produce a so-called snapshot of incoming data for computation.
Query Q2 puts the streams of coupons, users’ locations and the corresponding window
to the WHERE clause and relates the streams with the patterns for matching with them.

To sum up, RSP engines are different in several aspects. The two representative
ones diverge in the way they build the snapshot datasets for R2R evaluation, and more
crucially, the execution modes (pull- vs. push-based). This makes comparing them not
trivial. A logic-based approach to stream reasoning (presented next) allows us to fulfill
this goal more conveniently.

3 LARS: A Logic-based Framework for Analyzing Reasoning
over Streams

3.1 LARS in a Nutshell

LARS [3] is a logic-based approach recently introduced for the purpose of analyzing
stream reasoning. In a nutshell, LARS provides a logic with window and temporal

4 Note that a unifying syntax for RSP queries is still work in progress. Again, for illustrating
purposes, we choose to use a stable, old syntax.

4

operators to handle streaming data. On top of this, a rule-based language is defined
which can be seen as extension of Answer Set Programming [6] for streams.

Window operators � collect a recent finite portion of the input stream (recent in
terms of time or counting tuples) for further computation. Three temporal operators
allow fine-grained control for temporal reference. Given a formula ϕ, 3ϕ (resp. 2ϕ)
holds, if ϕ holds at some (resp. all) time point(s) in the selected window, and @tϕ holds
if ϕ holds exactly at time point t in the window. Window operators can be nested, thus
together with temporal operators they provide a compact means to express complex
conditions on the input streams. In the following, we will demonstrate LARS by building
up a LARS rule for the illustrating scenario. Technical details on LARS can be found
in [3].

Let offer(Sh,Pr ,Pe) be a ternary predicate about discounts offered by shops,
and isNear(Sh) be a unary predicate providing information that the user is near a
shop Sh . The window atom �30

τ 3offer(Sh,Pr ,Pe) takes a snapshot of the last 30
time units of a stream and uses the 3 operator to check whether an offer from shop Sh
on product Pr with a discount of Pe% appeared in the stream during this period.
Similarly, �5

τ3isNear(Sh) does the same job to take a snapshot of size 5 time units
of the shops near the user. Here, τ is the window type, specifying that the underlying
window function applied on the input stream is a time-based window.

An example of nesting of window operators is �30
τ 2�5

τ 3isNear(a). It holds if in
the last 30 time units, the user is near shop a in every subinterval of 5 time units. This
might indicate that she is very interested in some product provided by this shop.

Suppose we are given static background data that contains product information in a
predicate of the form g classify(Pr ,Ge), where Ge = 0 (resp. 1) marks that product Pr
is for women (resp., men). The following LARS rule amounts to the RSP queries in the
previous section.

ans(Sh,Pr ,Pe) ← �30
τ 3offer(Sh,Pr ,Pe),�5

τ3isNear(Sh),

g classify(Pr ,Ge),Pe ≥ 20,Ge 6= 1.

This rule works as follows: the two window atoms provide offers announced in the
last 30 minutes and the shops near the user within the last 5 minutes. Together with
the gender classification of products provided by g classify , only products not for men
(Ge 6= 1) and have discount rate from 20% are concluded at the head with predicate ans .

The semantics of LARS programs (a set of LARS rules) is provided in terms of
answer streams. Intuitively, the input to a LARS program is a data stream containing
of extensional facts associated with time points. An answer stream at a time point
must include the data stream, and might add timestamped intensional facts due to the
application of LARS rules. The formal definition of answer streams [3] involves applying
the FLP reduct on a LARS program based on a guess, as in ASP. There can be multiple
answer streams at a time point as we allow default negation in the body of LARS rules.

As in our scenario, the LARS program having the single LARS rule above has one
answer stream where at time point 18, ans(b, rayban, 25) is concluded.

5

3.2 LARS as a Convenient Means to Compare RSP Engines

Before the introduction of LARS, comparing RSP engines was done at the practical
level, meaning that the proposed benchmarking systems just compare the output of the
engines without theoretical analysis of the difference in their semantics. The most recent
work [5] in the RSP community on this topic just identified the difference in building the
snapshot of C-SPARQL and CQELS.

With LARS, different stream processing/reasoning languages (not limited to just
RSP languages) can be compared within the same framework. The achieved results
can be used to compare existing languages with future ones as long as a translation of
the new languages to LARS is materialized. This give us more reusability in contrast
to working on an ad-hoc comparison between two RSP engines (say C-SPARQL and
CQELS), and then start from scratch when a new engine with new syntax and semantics
is introduced.

Furthermore, the model-based approach of LARS allows us to talk about semantics
properties and construct formal conditions to identify situation when different engines
agree on their output.

In the next section, we summarize our strategy and findings in using LARS to
compare C-SPARQL and CQELS. Note that for a theoretical analysis, we adopt as in [5]
the assumption that execution time of RSP engines is neglectable compared to the data
rate of the input streams.

4 Capturing RSP Semantics with LARS for Analysis

In order to exploit LARS to analyze, compare the semantics of RSP engines, the first
step is to provide translations from the respective RSP query languages into LARS.
As RSP query languages (C-SPARQL and CQELS in particular here) are constructed
based on SPARQL, we make use of a well-known translation from SPARQL to Datalog
proposed in [9] and introduce additional LARS rules to deal with the streaming input. As
a consequence, we end up with two translations which are slightly different in the way
they treat the streaming input to build the snapshots to be evaluated by rules capturing
the functionalities of SPARQL operators (rules that originally come from [9]).

Still, the execution modes pull- and push-based need to be captured. For this, we
introduced additional, independent LARS rules that mimic these execution modes on
any LARS program.

Combining the two above translations allow us to capture the semantics of C-
SPARQL and CQELS. The comparison of their semantics can thus be broken down into
two phases according to the two translations.

The first phase compares the operation of the two engines at the same time point,
having the same input stream fed into them. Once the condition for the two engines to
output the same results given this setting is identified, we can move to the next phase.

In the second phase, we just need to analyze the conditions to guarantee that the
two pull- and push-based executions agree by finding the conditions that the two modes
provide the same input to the engines. It turned out that this is the most tricky part to get
the engines agreed. The main reason is that the engines are executed at different time

6

points. While the pull-based mode triggers one execution after a fix interval of time, the
push-based execution can be triggered several times in the same interval according to
the arriving of input in the stream.

Therefore, we introduced an interval-based notion of agreement between C-SPARQL
and CQELS. Intuitively, they are said to agree within an interval iff the output returned
by C-SPARQL at the end of the interval coincides with the union of the outputs reported
by CQELS during the interval.

The necessary conditions found in [4] show that the engines only agree on a very
restricted setting, with a special shape of the input stream: the stream needs to be off
frequently at the beginning of the computing interval so that the input collected for
pull-based execution at the end of the interval coincides with the input collected by
push-based mode at every time point in the interval. This does not hold for dense stream
where input tuples/triples arrive at almost every time point.

5 Conclusion

We capture two prominent RSP semantics within the logic-based framework LARS
which provides a common base for formal comparisons. Based on the generic rule-
based approach one can abstract from particular assumptions with regards to data
representation, query syntax, or processing models. We showed that the syntactically
similar query languages C-SPARQL and CQELS differ drastically in their output. While
these differences might be intuitive for the RSP expert, they now can be understood
precisely on formal grounds.

References

1. A. Arasu, S. Babu, and J. Widom. The CQL continuous query language: semantic foundations
and query execution. VLDB J., 15(2):121–142, 2006.

2. D. F. Barbieri, D. Braga, S. Ceri, E. Della Valle, and M. Grossniklaus. C-SPARQL: a continuous
query language for rdf data streams. Int. J. Semantic Computing, 4(1):3–25, 2010.

3. H. Beck, M. Dao-Tran, T. Eiter, and M. Fink. LARS: A logic-based framework for analyzing
reasoning over streams. In AAAI, 2015.

4. M. Dao-Tran, H. Beck, and T. Eiter. Contrasting RDF Stream Processing Semantics. In JIST,
2015.

5. D. Dell’Aglio, E. D. Valle, J.-P. Calbimonte, and O. Corcho. Rsp-ql semantics: a unifying
query model to explain heterogeneity of rdf stream processing systems. IJSWIS, 10(4), 2015.

6. T. Eiter, G. Ianni, and T. Krennwallner. Answer Set Programming: A Primer. In RW, pages
40–110, 2009.

7. J. Pérez, M. Arenas, and C. Gutierrez. Semantics and complexity of sparql. ACM Trans.
Database Syst., 34:16:1–16:45, September 2009.

8. D. L. Phuoc, M. Dao-Tran, J. X. Parreira, and M. Hauswirth. A native and adaptive approach
for unified processing of linked streams and linked data. In ISWC (1), pages 370–388, 2011.

9. A. Polleres. From SPARQL to rules (and back). In WWW 2007, pages 787–796, 2007.

7

