
Encoding Logic Programs in Assumption-Based

Argumentation

Claudia Schulz and Francesca Toni
Imperial College London

Introduction

In a (normal) Logic Program (LP) knowledge is encoded as a set of infer-
ence rules made of atoms and negation-as-failure (NAF) literals, which are de-
fault elements assumed to hold as long as their complementary atom cannot
be proven to hold. For example, not a denotes a NAF literal whose comple-
mentary atom is a. Similarly, in an Assumption-Based Argumentation (ABA)
framework [1, 4, 15] knowledge is encoded as a set of inference rules, but made
of sentences in some given underlying logical language. This language includes
default elements, called assumptions, and each assumption is equipped with a
contrary sentence. For example, M(a ∧ b) may be an assumption whose con-
trary is ¬(a ∧ b), with the underlying language that of classical logic extended
with sentences of the form M(s) where s is a sentence in classical logic (M(s)
stands for ‘s is consistent’ and is used to capture default logic as an instance
of ABA [1]). LPs are special instances of ABA frameworks [1], where sentences
are atoms or NAF literals, assumptions are NAF literals, and the contrary of
an assumption (NAF literal) is its complementary atom.

Even though the representation of knowledge in ABA frameworks resembles
and generalises that of LPs and other non-monotonic reasoning formalism [1],
the semantics of ABA frameworks is traditionally given in a completely different
way from that of LPs, namely in dialectical terms, using a notion of attack
between sets of assumptions (or between arguments that can be obtained from
them, using the inference rules) [1, 4, 15]. When LPs are encoded as ABA
frameworks, the dialectical semantics of the latter can be used to justify presence
or absence of atoms and NAF literals in stable models of the encoded LP [13].

Alternatively, the semantics of ABA frameworks can be characterised in
terms of labellings of assumptions as in, out, or undec [12, 2]. When LPs
are encoded as ABA frameworks, various types of ABA labellings correspond
to well-known semantics of LPs [2]. As a by-product of this correspondence,
graphical representations of the structure and labellings of an ABA framework
encoding a LP also visualises how the models of the encoded LP emerge from
its structure [14].

In this short article we briefly explain and exemplify 1) how LPs are encoded
as ABA frameworks and how their semantics correspond, (2) how the encoding
can be used to provide justifications for (non-)membership in stable models via
the dialectical formulation of ABA semantics, and (3) how the encoding can be
used to provide a graphical representation of LPs and their semantics applying

1



the ABA semantics in terms of labellings.

(1) Encoding of LPs as ABA frameworks

We illustrate this encoding with an example. The following simple LP P1:

k ← not p p← not k r ← not k

can be encoded as an ABA framework with

• inference rules: P1

• assumptions: not p, not k, not r

• p contrary of not p, k contrary of not k, r contrary of not r

• underlying language: p, k, r, not p, not k, not r

Note that in this and any ABA framework resulting from encoding a LP, con-
trary is “asymmetric”, for example p is the contrary of not p but not p is not
the contrary of p (because only assumptions have contraries, and p is not an
assumption).

Here, the set of assumptions {not p} attacks the assumptions not k, since
the contrary k of the attacked assumption not k can be derived from the attack-
ing set {not p} using the first inference rule in P1 (this derivation is denoted
{not p} ` k and called an argument). For the same reason {not p}, and any su-
perset thereof, attacks all sets of assumptions containing not k, such as {not k},
{not k, not p}, and so on. Similarly, {not p} attacks not k (and any set con-
taining it), {not k} attacks not r etc.

Given the encoding of LPs into ABA frameworks, several correspondence
results hold between semantics for LPs and semantics for ABA frameworks, both
in dialectical and labelling terms, as illustrated next separately for 2-valued and
3-valued semantics for LPs.

2-valued (Stable Model) Semantics

P1 has two stable models [8]: {k} and {p, r}. Since stable models are 2-valued,
the meaning of the first stable model, for instance, is clearly that k is true and
both p and r are false.

In the encoding of P1 as an ABA framework, there are two stable sets of
assumptions, {not p, not r} and {not k}, where a stable set of assumptions
does not attack itself and it attacks every assumption it does not contain [1].
For instance, {not p, not r} is stable as it does not attack itself and it attacks
not k, but {not p} is not stable because it does not attack all assumptions not
contained in it, in particular {not p} does not attack not r. The first stable set of
assumptions corresponds to the first stable model, in the sense that all elements
of the stable model (just k in this case) can be derived from {not p, not r} using
inference rules in P1. An analogous correspondence holds between the second
stable set of assumptions and the second stable model.

In labelling terms, there are two stable labellings [12, 2] of the ABA frame-
work encoding P1, which are 2-valued in the sense that they only assign the la-
bels in and out: {(not k,out), (not p, in), (not r, in)} and {(not k, in), (not p,out),

2



(not r,out)}. In a stable labelling an assumption is labelled in if and only if
every set of assumption attacking it contains an assumption labelled out. So
in the first stable labelling not p is labelled in because all sets of assumptions
attacking not p, i.e. {not k} and any superset thereof, contain an assumption
labelled out (not k). Conversely, an assumption is labelled out if and only if
some set of assumptions attacking it contains only assumptions labelled in. So
not k is labelled out because it is attacked by the set {not p} which contains
only assumptions labelled in. The first stable labelling corresponds to the first
stable model in the sense that the assumptions labelled in (not p and not r)
coincide with the false atoms in the stable model (p and r); conversely, the
assumptions labelled out (not k) coincide with the true atoms in the stable
model (k). The same correspondence holds between the second stable labelling
and the second stable model.

3-valued Semantics

Correspondences do not only hold between 2-valued LP and ABA semantics,
but also between 3-valued ones, for example between 3-valued stable models [9]
of a LP and complete sets/labellings [1, 12] of the encoding ABA framework.
To illustrate this correspondence, consider the LP P2:

k ← not p p← not k r ← not r r ← not r, not k

which has three 3-valued stable models: 〈{p}, {k}〉, 〈{k}, {p}〉, and 〈∅, ∅〉. En-
coding P2 in an ABA framework yields three complete sets of assumptions (see
[1] for the definition): {not k}, {not p}, and ∅. As in the case of the 2-valued
semantics, all true atoms in a 3-valued stable model can be derived from the
corresponding complete set of assumptions, for example p in the first 3-valued
stable model can be derived from the first complete set of assumptions {not k}.
In addition, the false atoms in a 3-valued stable model (k) coincide with the
assumptions in the corresponding complete set of assumptions (not k).

In labelling terms, the ABA framework encoding P2 has three complete la-
bellings [12]: {(not k, in), (not p,out), (not r,undec)}, {(not k,out), (not p, in),
(not r,undec)}, and {(not k,undec), (not p,undec), (not r,undec)}. Here,
there is not only a correspondence between true and false atoms in the mod-
els of the LP and in and out assumptions in the labellings of the encoding
ABA framework, but also between undefined atoms in the models and undec
assumptions in the labellings. The previously observed correspondence between
2-valued semantics is thus extended to the 3-valued case as follows [14]:

• a is true in the (3-valued stable) model iff not a is labelled out by the
(complete) labelling;

• a is false in the (3-valued stable) model iff not a is labelled in by the
(complete) labelling; and

• a is undefined in the (3-valued stable) model iff not a is labelled undec
by the (complete) labelling.

The same correspondence also holds between L-stable models [6] of a LP and
semi-stable sets/labellings of the encoding ABA framework [14], well-founded

3



models [7] and grounded sets/labellings [2], and regular models [16] (equiva-
lently preferred extension [3] and maximal stable models [10]) and preferred
sets/labellings [2].

(2) Justification of LPs under stable semantics

The correspondence of semantics between LPs and their encoding ABA frame-
works allows us to apply techniques developed for ABA frameworks to LPs. For
example, a dialectical proof procedure for ABA frameworks has recently been
adapted to explain why a literal is or is not contained in a stable model of a LP
[13]. Considering again P1 and its stable models, the aforementioned procedure
can be used to construct two different types of justifications as to why, for in-
stance, r is contained in the second stable model {p, r} of P1, one based on the
interaction between derivations (arguments in ABA) as in Figure 1 (left) and
the other one on the interaction between atoms and NAF literals as in Figure 1
(right). These justifications exhibit an important property, namely they explain
a literal in terms of an admissible fragment [5] of the respective stable model.

{not k} ` r
+

{not p} ` k
−

{not k} ` p
+

{not p} ` k
−

...

r+

not k+

+

k−

−

not p−

−

p+

+

+

Figure 1: Justifications as to why r is contained in the second stable model of
P1 based on interactions between arguments (left) and literals (right).

The explanation on the left of Figure 1 expresses that r is in the stable
model, indicated by the +, because there is an argument {not k} ` r. This
argument is attacked by an argument {not p} ` k, but k is not in the stable
model, indicated by the −, so we can think of the attack as “not succeeding”.
The reason that k is not in the stable model is that the argument for k is again
attacked, namely by an argument {not k} ` p where p is in the stable model
(indicated by +), so this attack “succeeds”. The reason that p is in the stable
model is that the argument for k attacks the argument for p, and so on.

The explanation on the right of Figure 1 expresses that r is in the stable
model (r+) because it is supported (dashed arrow) by the NAF literal not k
which is true with respect to the stable model (not k+), so the support “suc-
ceeds” (+ on the dashed arrow). The reason that not k is true is that even
though it is in conflict (solid arrow) with its complementary atom k, k is not in

4



the stable model (k−) and therefore the conflict “does not succeed” (− on solid
arrow). The rest of the justification can be read analogously.

(3) Visualising LPs and their semantics

The attack relation of an ABA framework can be displayed as a graph providing
valuable information about the structure of the ABA framework. Since LPs can
be encoded in ABA frameworks, the same graphical representation can also be
used to visualise important structural features of LPs, in particular conflicts
between literals [14].

Figure 2 shows the graphical representation of the ABA framework encod-
ing P2. The three differently coloured labels above the assumptions indicate
the labels of these assumptions in the three complete labellings of the ABA
framework.

Figure 2: Attacks between sets of assumption in the ABA framework encoding
P2 and its three complete labellings.

This representation provides some important insights about the structure of
P2: Firstly, not k and not p are in a semantic conflict, meaning that they can
never both be true in a 3-valued stable model. In other words, if k is true then
p is false, and vice versa. Thus, the graph provides an intuitive explanation as
to why k (respectively p) is true in one of the 3-valued stable models, but not in
the other. Secondly, not r is in conflict with itself. Applying the same intuitive
meaning as before, this means that if r is true then r has to be false, and vice
versa, which of course is a contradiction. Consequently, r can only be undefined
with respect to any 3-valued stable model. Thus, the graph again provides an
explanation for the truth value of an atom.

Conclusion

In this article we demonstrated the correspondence between various semantics of
a LP and the semantics of an ABA framework encoding the LP. This correspon-
dence has proven useful to apply techniques developed for ABA frameworks to
LPs, such as justifying (non)membership of literals in stable models and visual-
ising LPs and their semantics. Linked to the justification of stable models is also
the debugging of inconsistent LPs under the stable model or answer set seman-
tics. Recently, different types of inconsistencies in LPs have been characterised
[11] as a first step towards explaining why an inconsistency arises. We hope that
based on that, explanations may be constructed using ABA techniques similar
to the ones used for justifications. In future work it will also be interesting to
see whether the correspondence between LPs and ABA frameworks goes beyond

5



normal LPs, i.e. whether the correspondence persists when dealing with LPs
containing constraints, disjunction, or aggregates.

References

[1] Andrei Bondarenko, Phan Minh Dung, Robert A. Kowalski, and Francesca
Toni. An abstract, argumentation-theoretic approach to default reasoning.
Artificial Intelligence, 1997.

[2] Martin Caminada and Claudia Schulz. On the equivalence between
assumption-based argumentation and logic programming. In ArgLP’15,
2015.

[3] Phan Minh Dung. Negations as hypotheses: An abductive foundation for
logic programming. In ICLP’91, 1991.

[4] Phan Minh Dung, Robert A. Kowalski, and Francesca Toni. Assumption-
based argumentation. In Argumentation in Artificial Intelligence. Springer
US, 2009.

[5] Phan Minh Dung and Phaiboon Ruamviboonsuk. Well-founded reasoning
with classical negation. In LPNMR’91, 1991.

[6] Thomas Eiter, Nicola Leone, and Domenico Saccà. On the partial semantics
for disjunctive deductive databases. Annals of Mathematics and Artificial
Intelligence, 19(1-2):59–96, 1997.

[7] Allen Van Gelder, Kenneth A. Ross, and John S. Schlipf. The well-founded
semantics for general logic programs. Journal of the ACM, 38(3):620–650,
1991.

[8] Michael Gelfond and Vladimir Lifschitz. The stable model semantics for
logic programming. In ICLP’88/SLP’88, 1988.

[9] Teodor C. Przymusinski. Every logic program has a natural stratification
and an iterated least fixed point model. In PODS’89, 1989.

[10] Domenico Saccà and Carlo Zaniolo. Stable models and non-determinism
in logic programs with negation. In PODS’90, 1990.

[11] Claudia Schulz, Ken Satoh, and Francesca Toni. Characterising and ex-
plaining inconsistency in logic programs. In LPNMR’15, 2015.

[12] Claudia Schulz and Francesca Toni. Complete assumption labellings. In
COMMA’14. IOS Press, 2014.

[13] Claudia Schulz and Francesca Toni. Justifying answer sets using argumen-
tation. Theory and Practice of Logic Programming, FirstView, 2 2015.

[14] Claudia Schulz and Francesca Toni. Logic programming in assumption-
based argumentation revisited - semantics and graphical representation. In
AAAI’15. AAAI Press, 2015.

6



[15] Francesca Toni. A tutorial on assumption-based argumentation. Argu-
ment & Computation, Special Issue: Tutorials on Structured Argumenta-
tion, 5(1):89–117, 2014.

[16] Jia-Huai You and Li-Yan Yuan. Three-valued formalization of logic pro-
gramming: Is it needed? In PODS’90, 1990.

7


