MetaProbLog

Theofrastos Mantadelis! and Gerda Janssens?

University of Porto, theo.mantadelis@dcc.fc.up.pt
2KU Leuven, gerda. janssens@cs.kuleuven.be

April 7, 2015

1 Introduction

MetaProbLog is a framework of the ProbLog [2] 5] probabilistic logic program-
ming language. ProbLog extent Prolog programs by annotating facts with
probabilities. In that way it defines a probability distribution over all Pro-
log programs. ProbLog follows the distribution semantics presented by Sato [§].
MetaProbLog extends the semantics of ProbLog by defining a "ProbLog engine"
which permits the definitions of probabilistic meta calls [6, [7]. MetaProbLog
inference, currently allows the computation of marginal probabilities with or
without evidence. Furthermore, it allows the computation of marginal proba-
bilities for the answers of non-ground queries.

MetaProbLog first appeared in [6] where the focus was to solve meta calls for
ProbLog. From that time, MetaProbLog’s implementation has been extended to
include many new features. The MetaProbLog framework has many similarities
with the ProbLog framework [5] such as support for annotated disjunctions,
tabling, general negation. MetaProbLog introduces several unique features such
as meta calls, datasets. Furthermore, MetaProbLog shares some features that
appear in ProbLog 2 [3] such as multiple queries, evidence.

The aim of this article is to demonstrate the unique features of MetaProbLog
with simple examples.

2 State-of-the-art Inference

MetaProbLog has two primary inference methods: exact inference and pro-
gram sampling. The exact inference method, uses knowledge compilation [IJ.
MetaProbLog implements two different knowledge compilation approaches. The
first approach is compiling into Reduced Ordered Binary Decision Diagrams
(ROBBDs) and the second approach is compiling into smooth deterministic,
Decomposable Negation Normal Forms (sd-DNNFs). Currently, for the major-
ity of problems ROBDDs perform much faster than sd-DNNFs for MetaProbLog.


theo.mantadelis@dcc.fc.up.pt
gerda.janssens@cs.kuleuven.be

Both compilation approaches are the current state-of-the-art in knowledge com-
pilation.

Extensive experiments showed that sd-DNNFs perform better on specific
problems and more specifically on queries with evidence. Comparison with sev-
eral different ProbLog pipelines [11]], showed that there is not a clear universal
winner in performance. Each ProbLog pipeline has a class of problems which
performs notably better than the other pipelines. For that reason MetaProbLog
provides to the user a wide selection of options that can optimize the perfor-
mance over specific problems.

In addition, MetaProbLog implements a program sampling [5] inference
method. This elegant simple sampling approach is very natural to ProbLog
and has been proven very useful when exact inference is intractable.

Both exact and program sampling inference support general negation, mul-
tiple queries and queries with evidence. Furthermore, MetaProbLog supports
for all inference methods probabilistic meta calls and non-ground queries that
return answers through backtracking.

3 Example Program & Queries

To illustrate some of the unique features of MetaProbLog, we present a small
MetaProbLog program that defines two different probabilistic graphs and uses
them as different datasets. To illustrate the modularity of MetaProbLog pro-
grams we use three different files. MetaProbLog not only fully complies with
the module functionality of Yap Prolog, but it also implements some extra func-
tionality, namely datasets, that allows MetaProbLog to load different datasets.
The user can choose which dataset(s) are visible to each module at runtime.

module (probabilistic_graph, [path/2,
import_dataset/1,
import_all_datasets/0,
problog_inference/3]) .

:- use_module (metaproblog) .

:- use_module(problog_datasets).

:- use_dataset(graphO1).

:- use_dataset (graph02) .

:- problog_table path/2.
path(X,Y) :- drc(X,Y).
path(X,Y) :-

drc(X, Z),

Z\==1Y,

path(Z, Y).

% Probabilistic meta calls.
% problog_inference/2 inherits the inference method from the call.
P::path_prob(P).



most_probable_path(From, Tol, To2) :-
problog_inference(path(From, Tol), P1),
problog_inference(path(From, To2), P2),
BestP is max(P1, P2),
path_prob(BestP) .

% Syntactic Sugar for easier use.

import_dataset (DataSet) :-
problog_import_only(DataSet, [drc/2]).

import_all_datasets :-
problog_import_only(graphO1l, [drc/2]),
problog_import(graph02, [drc/2]).

% These are two different files that define the datasets.

% file: graphOl.yap file: graphO2.yap
:- dataset(graphO1, [drc/2]). :- dataset(graph02, [drc/2]).
0.15::drc(1, 2). 0.52::drc(1, 3).
0.24::drc(1, 4). 0.43::drc(1, 5).
0.33::drc(1, 6). 0.34::drc(2, 4).
0.42::drc(2, 3). 0.25::drc(2, 6).
0.51::drc(2, 5). 0.25::drc(3, 4).
0.42::drc(3, 4). 0.34::drc(4, 2).
0.33::drc(3, 6). 0.43::drc(5, 2).
0.24::drc(4, 5). 0.52::drc(6, 2).
0.15::drc(5, 6).

ProbLog datasets function similarly with Prolog modules, but loading a dataset
does not automatically import the exported predicates of the dataset. For our
example, in order to access the graph of a dataset we must also import it.

?- import_dataset (graphO1).
Yes.

We can then query our probabilistic graph. ProbLog’s inference is based on
calculating the success probability of a query. For our example, the probability
that a path exists from node 1 to node 4 at the imported graph.

?7- problog_inference(problog_exact, path(l, 4), P).
P = 0.2601096

Similarly we are now going to only import the dataset that contains graph02.
This practically changes the background knowledge of the ProbLog program
allowing us to have different datasets to query.

?7- import_dataset (graph02) .
Yes.

?7- problog_inference(problog_exact, path(l, 4), P).
P = 0.1903485



Notice that the probability for the success of the query altered. Finally, MetaProbLog
datasets allow us to import more than one datasets at the same time. In our
case both graph0Ol and graph0O2 can be imported. For the next query we also
illustrate the use of program sampling.

?- import_all_datasets.
Yes.

?- problog_inference(problog_exact, path(l, 4), P).
P = 0.5724326

7- problog_inference(problog_program_sampling, path(1l, 4), P).
P = 0.570875

Obviously, now that both graphs are available the probability for the success of
the query increases. The merge of the two graphs creates several extra paths
between the two nodes which results to a higher probability than just the sum of
the probabilities when using each graph separately. We want to point out that
the explanations (SLD derivations) might grow exponentially with the addition
of edges.

We also present a query that uses problog_answers this is a different infer-
ence task that allows MetaProbLog to calculate the answer of a non-ground call
and return the marginal probability of its success. While before we were query-
ing for the success probability, now we query to get the answer of an unbound
variable and the success probability of that answer for the ProbLog program.
MetaProbLog, uses backtracking in order to return all possible answers and
their respective probabilities.

?7- problog_inference(problog_answers(problog_exact), path(1l, A), P).

A =2,
P = 0.5683266 7 ;
A =4,
P = 0.5724326 7 ;
A =6,
P = 0.552904 7 ;
A =3,
P = 0.6187836 7 ;
A =25,
P = 0.609305 7 ;

Furthermore, MetaProbLog is capable to perform probabilistic meta calls. The
following query calls inference within inference isolating the results in order to
be used for decisions. In this case to choose the highest probability.

?7- problog_inference(problog_exact, most_probable_path(1,3,5),P).
P = 0.6187836

Finally, we present a query that uses evidence which is one of the newest
MetaProbLog features. We again query for the success of path(1, 4) but this
time we state that a path exists from node 2 to node 3.



?7- problog_inference(problog_exact, path(l, 4)/path(2, 3), P).
P = 0.606907380952381

4 Applications

Until now, many common ProbLog applications have been used in order to
verify and improve MetaProbLog, examples include: link discovery in Biomine
Alzheimer database [9, [2]; querying WebKB [3]; querying a probabilistic dictio-
nary [I0]. None of these applications is novel; as they are examined from the
original ProbLog implementation.

MetaProbLog is able to model all statistical graphical models such as Hidden
Markov Models, Bayesian Networks, Probabilistic Graphs. Furthermore, any
Prolog program could be extended with MetaProbLog to use probabilities and
take decisions with them.

5 Future Features & Improvements

Some of our future directions are:
1. Use MetaProbLog in a rule learner.
2. Extend MetaProbLog with a parameter learning algorithm similar with [4].
3. Improve the performance of multiple queries and queries with evidence.
4. Migrate inference methods from the original ProbLog.

Furthermore, we are interested in implementing novel applications and an-
alyze probabilistic databases. We are interested in finding new datasets and
problems that can be nicely modeled by our system.

6 Distribution

MetaProbLog’s website (https://www.dcc.fc.up.pt/metaproblog/tiki-index.
php).

References

[1] A. Darwiche and P. Marquis. A knowledge compilation map. J. Artif.
Intell. Res. (JAIR), 17:229-264, 2002.

[2] L. De Raedt, A. Kimmig, and H. Toivonen. ProbLog: a probabilistic Prolog
and its application in link discovery. In IJCAI pages 2468-2473. AAAI
Press, 2007.


https://www.dcc.fc.up.pt/metaproblog/tiki-index.php
https://www.dcc.fc.up.pt/metaproblog/tiki-index.php

13

[4]

151

[6]

7]

18]

19]

[10]

[11]

D. Fierens, G. V. D. Broek, J. Renkens, D. Shterionov, B. Gutmann,
I. Thon, G. Janssens, and L. de Raedt. Inference and learning in prob-
abilistic logic programs using weighted boolean formulas. TPLP, 2013.

B. Gutmann, A. Kimmig, K. Kersting, and L. De Raedt. Parameter learn-
ing in probabilistic databases: A least squares approach. In ECML/PKDD
(1), pages 473-488, 2008.

A. Kimmig, B. Demoen, L. D. Raedt, V. S. Costa, and R. Rocha. On the
implementation of the probabilistic logic programming language ProbLog.
TPLP, 11:235-262, 2011.

T. Mantadelis and G. Janssens. Nesting probabilistic inference. Computing
Research Repository, abs/1112.3785, 2011.

L. D. Raedt and A. Kimmig. Probabilistic programming concepts. CoRR,
abs/1312.4328, 2013.

T. Sato. A statistical learning method for logic programs with distribution
semantics. In Proceedings of International Conference on Logic Program-
ming, pages 715-729, 1995.

P. Sevon, L. Eronen, P. Hintsanen, K. Kulovesi, and H. Toivonen. Link
discovery in graphs derived from biological databases. In DILS, pages 35—
49, 2006.

D. Shterionov and G. Janssens. Data acquisition and modeling for learning
and reasoning in probabilistic logic environment. In L. Antunes, H. S.
Pinto, R. Prada, and P. Trigo, editors, Proceedings of the 15th Portuguese
Conference on Artificial Intelligence, pages 298-312, 2011.

D. Shterionov and G. Janssens. Crucial components in probabilistic in-
ference pipelines. In ACM/SIGAPP Symposium On Applied Computing,
Salamanca, Spain, 13 - 17 April 2015, 2015. Accepted.



	Introduction
	State-of-the-art Inference
	Example Program & Queries
	Applications
	Future Features & Improvements
	Distribution

