
ASP Taking Action

Michael Fink
Vienna University of Technology,

Austria

Abstract

The acthex formalism generalizes logic programs under the answer-set semantics,
that may have access to external sources (aka HEX-programs), by introducing action
atoms in rule heads in order to effect an external environment. In this article
we briefly motivate and review the main concepts of the framework. Prospective
applications are dynamic in nature and may interleave reasoning with actual action
execution. As a representative, we report on an academic challenge where the
framework may be fruitfully applied.

Motivation
One hammer never fits all nails. Despite its success as a declarative problem solving
approach, not least due to availability of efficient solvers, this certainly also holds for
declarative logic programming paradigms such as Answer Set Programming (ASP).
Even if it is not a matter of expressivity, efficiency considerations may call for the
use of dedicated algorithms (for instance, how about computing physical properties of
2-dimensional objects represented as convex polygons?). Moreover, current trends in
computing, such as context awareness or distributed systems, raise the need to access
external data sources, e.g., on the Web. Extensions of ASP, such as HEX-programs [7],
that incorporate external means of computation and sources of information have been
developed precisely for that purpose. They have successfully been exploited for many
applications, including querying data and ontologies [6, 8, 9], e-government [12], fuzzy
answer set programming [10], multi-context reasoning [5, 2], conditional planning [11].

However, dynamic systems impose further challenges. External atoms are purposely
stateless (yielding a purely declarative semantics) and not intended to change the state
of external sources. While dynamic systems are concerned with states that evolve over
time and computation becomes stateful. A common way to couple declarative reasoning
tasks with code that actually effects an exogenous environment is roughly to: wrap a
declarative solver in a procedural language, execute it iteratively, and at each step parse
its answer sets and establish ad-hoc links with effective code. For a less cumbersome
and more rigorous interaction, a generalization of HEX-programs called acthex [1, 4]
aims at tighter integration under declarative control, essentially by means of so-called
action atoms in rule heads. In the following, we briefly review the main concepts of
the acthex framework, before we turn to an academic challenge where we expect to
fruitfully exploit acthex-programs to improve over an existing HEX-based solution.

1



Programs with External and Action Atoms
The acthex formalism [1, 4] generalizes HEX programs [7] introducing dedicated action
atoms in rule heads. Action atoms can actually operate on and change the state of an
environment, which can be roughly seen as an abstraction of realms outside the logic
program at hand. The acthex framework allows to conveniently design ASP-based
applications by properly connecting logic-based decisions to actual effects thereof.

In addition to constants (also used for predicate names) and variables, acthex pro-
grams build on external predicate names (prefixed by &) and action predicate names
(prefixed by #).

An external atom is of the form

&g [Y1, . . . , Yn](X1, . . . , Xm),

where Y1, . . . , Yn and X1, . . . , Xm are lists of (input and output) terms. Formally, its
semantics is given by an associated boolean function f&g of arity n+m+1. Intuitively,
given an interpretation I (for ordinary atoms) and n+m ground terms, the corresponding
ground external atom evaluates to true under I if tf&g returns 1.

An action atom is of the form

#g [Y1, . . . , Yn]{o, r}[w : l],

where #g is an action predicate name, Y1, . . . , Yn is a list of input terms of fixed length
in(#g) = n. Moreover, attribute o ∈ {b, c, cp} is called the action option that identifies
an action as brave, cautious, or preferred cautious, while optional integer attributes
r, w, and l are called precedence, weight, and level of #g , respectively. Semantically,
action atoms are assigned an n + 2-ary action function f#g . It takes an environment
state E, an interpretation I , and n ground terms as its input and returns an environment
state E′, thus intuitively capturing the execution of the corresponding ground action. A
rule r is of the form

α1 ∨ . . . ∨ αk ← β1, . . . , βn,not βn+1, . . . ,not βm,

where body elements β are (ordinary) atoms or external atoms, and head elements α are
(ordinary) atoms or action atoms. An acthex program is a finite set of rules.

Example 1 The acthex program P1 = {#robot [goto, charger ]{b, 1}←&sensor [bat ](low);
#robot [clean, kitchen]{c, 2}←night ; #robot [clean, bedroom]{c, 2}← day ;night ∨ day←}
uses action atom #robot to control a robot, and an external atom &sensor to access
sensor data. Intuitively, precedence 1 of action atom #robot [goto, charger ]{b, 1} should
make the robot recharging its battery, if necessary, before cleaning actions. 2

acthex semantics. An acthex program P is evaluated wrt. a fixed state (snapshot) of
the external environment E using the following steps:

(i) answer sets of P are determined wrt. E, and the set of best models is a subset of
the answer sets determined by an objective function (taking into account level and
weight associated with action atoms);

(ii) any (best) model originates a set of corresponding execution schedules S, i.e., a
sequence of actions to execute (taking into account actions’ options and prefer-
ences);

2



(iii) executing the actions of (and sequentially according to) a selected schedule S
yields another (not necessarily different) state E′ of the environment, called the
observed execution outcome; finally

(iv) the process may be iterated starting at (i), by considering a snapshot E′′, which
can be different from E′ due to exogenous actions (in so-called dynamic environ-
ments).

Answer Sets are defined similarly to HEX programs [7], i.e., using Herbrand inter-
pretations, the grounding of P wrt. the Herbrand universe, and the FLP reduct, where
ground action atoms in rule heads are treated like ordinary atoms as far as answer set
computation is concerned.

An implementation1of the acthex framework has been realized as an extension to
the dlvhex system. Compared to the workflow of an answer set solver, it also computes
execution schedules and executes one of it according to the semantics of acthex programs
given a selection policy of execution schedules (e.g., first computed), and executable
code provided for action predicates. A toolkit facilitates the development of libraries of
action predicates with some example libraries available.

Several problems of practical importance and dynamic nature fit the realm of po-
tential acthex applications, including knowledge base updates, reactive reasoning over
changing data, the interleaving of (re-)planning with actual plan execution, logic-based
agent programming, etc. For the remainder of this article, however, let us focus on an
interesting academic challenge.

Angry Birds AI Competition – a Challenge
Angry Birds is a very popular video game where the main goal is to shoot at some pigs
by means of birds of different characteristics from a slingshot. The game field (which is
static until the player moves) features some structures that shelter pigs. Structures can be
very complicated and can involve a number of different object categories with different
properties, like wood, ice, stone, etc. The game scenario evolves largely complying with
physics laws on a bi-dimensional plane; thus, it is possible, in principle, to infer how a
structure will change if hit at a certain position by a certain bird.

The Angry Birds AI Competitions2 are designed to test the abilities of Angry Birds
artificial agents, playing on a variety of levels, on the Google Chrome version of the
game. The competition runs on a client/server architecture, where the server runs
an instance of the game for each participating agent. Each agent runs on a client
computer, and communicates with the server according to a given protocol that allows
agents to fetch screenshots of their game state at any time. An artificial player can also
obtain the current high scores for each level, and can prompt the server for executing
a shot, which will in turn be performed in the corresponding game state. The long
term goal of the Competition is to foster the building of AI agents that can play any
new level better than the best human players. In order to successfully solve this
challenge, participants are solicited to combine different areas of AI such as computer
vision, knowledge representation and reasoning, planning, heuristic search, and machine
learning. Successfully integrating methods from these areas is indeed one of the great
challenges of AI.

1http://www.kr.tuwien.ac.at/research/systems/dlvhex/actionplugin.html
2https://aibirds.org/

3



Figure 1: A successful shot featuring an exploding black bird.

In a joint effort of two groups at Technische Universität Wien (TUWIEN) and Uni-
versità della Calabria (UNICAL) we have developed a participating, logic programming
based agent [3]. It is called AngryHEX and realized using HEX-programs. Our agent
builds on the Base Framework provided by the organizers and extends it with declarative
means for decision making modules. Declarative logic programming kicks in on two
different layers for AngryHEX: the tactics layer, which plans shots, and decides how to
complete a level; and the strategy layer, which decides the order of levels to play and
possible multiple attempts to solve the same level.

Tactics. The tactics layer is declaratively realized by a HEX-program that computes
optimal shots based on information about the current scene and on domain knowledge
modeled as part of the program. Its input comprises scene information encoded as a set
of logic program facts (position, size and orientation of pigs, ice, wood and stone blocks,
slingshot, etc.); its output are answer sets that contain a dedicated atom describing the
target to hit, and further information about the required shot. Physics simulation results
and other information are accessed via external atoms. For instance, the following rule
intuitively represents the likelihood that an object O2 falls when O1 is hit, where the
fact whether O1 can push O2 at all depends on an external (physics) computation taken
into account by the external atom &canpush.

pushDamage(O2, P1, P ) ← pushDamage(O1, , P1),

P1 > 0,&canpush[ngobject](O1, O2),

pushability(O2, P2), P = P1 ∗ P2/100.

Strategy. This layer decides, at the end of each level, which level to play next. This
layer is also realized declaratively as an (ordinary) ASP program encoding our strategy
on three priority levels: (1) each available level is played once; (2) levels where the
agent score differs most from the current best score are selected; (3) levels where
AngryHEX achieved a score higher than the current best scores and that have the
minimum difference from the best score, are selected. For each level, the strategy layer
keeps track of previously achieved scores and previously selected initial target objects.

4



AngryHEX performed very well in the 2013 Competition at IJCAI, reaching semi-
finals. Notably, AngryHEX kept the first place out of 20 participants, in both the two
qualification rounds. Benchmarking performed by the Competition Organizer after the
Competition also shows AngryHEX ranking with the best score in the first 21 levels of
the ‘Poached Eggs’ level set. The agent also participated in the 2014 Competition at
ECAI this year with minor improvements, finishing quarterfinalist and outperforming
the 2013 winner (which participated unmodified however).

The competitions revealed several aspects for AngryHEX improvement. A very
important issue for its competitivness, which became clear already in 2013 but more
obvious this year, is to consider tactics on a more global scale beyond shot by shot
analysis. Here is where acthex may kick in: rather than calling dlvhex iteratively for (a
single) shot analysis, an acthex-program might suitably represent and encode planning
over a sequence of shots taking, e.g., the order and type of available birds into account.
Also, interleaving its execution with monitoring and re-planning after performing
individual shots might increase its robustness in case of unexpected outcomes. Since
it is precisely for capabilites like these that acthex sets out to facilitate it would be a
natural next step to evolve AngryHEX into an acthex agent.

Conclusion
The acthex framework is a promising generalization of HEX-programs, i.e., logic pro-
grams under the answer-set semantics with access to external sources, aiming at the
realization of reasoning tasks for dynamic systems under declarative control. Beyond
evaluating acthex in academic settings like the presented Angry Birds AI Competition,
an interesting application (and hot topic) would for instance be the implementation of
approaches to stream reasoning. In addition to applying the framework as a driving force
for further development, also interesting theoretical issues, such as regarding program
termination, branching in the environment space (e.g., due to nonmonotonic actions), or
incorporating parallel execution schedules remain for future work.

References
[1] Basol, S., Erdem, O., Fink, M., Ianni, G.: HEX Programs with Action Atoms.

In: Hermenegildo, M., Schaub, T. (eds.) Technical Communications of the 26th
International Conference on Logic Programming (ICLP’10). Leibniz International
Proceedings in Informatics (LIPIcs), vol. 7, pp. 24–33. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, Dagstuhl, Germany (2010), http://drops.dagstuhl.de/
opus/volltexte/2010/2580

[2] Brewka, G., Eiter, T.: Equilibria in Heterogeneous Nonmonotonic Multi-Context
Systems. In: Holte, R.C., Howe, A. (eds.) 22nd AAAI Conference on Artificial
Intelligence (AAAI’07). pp. 385–390. AAAI Press (2007), http://www.informatik.
uni-leipzig.de/∼brewka/papers/Equilibria.pdf

[3] Calimeri, F., Fink, M., Germano, S., Ianni, G., Redl, C., Wimmer, A.: Angryhex:
an artificial player for angry birds based on declarative knowledge bases. In: Bal-
doni, M., Chesani, F., Mello, P., Montali, M. (eds.) Proceedings of the Workshop
Popularize Artificial Intelligence co-located with the 13th Conference of the Italian
Association for Artificial Intelligence (AI*IA 2013), Turin, Italy, December 5,

5



2013. CEUR Workshop Proceedings, vol. 1107, pp. 29–35. CEUR-WS.org (2013),
http://ceur-ws.org/Vol-1107/paper10.pdf

[4] Eiter, T., Fink, M., Ianni, G., Krennwallner, T., Schüller, P.: Pushing Efficient
Evaluation of HEX Programs by Modular Decomposition. In: Delgrande, J., Faber,
W. (eds.) 11th International Conference on Logic Programming and Nonmonotonic
Reasoning (LPNMR’11). LNAI, vol. 6645, pp. 93–106. Springer (May 2011),
http://www.kr.tuwien.ac.at/staff/tkren/pub/2011/lpnmr2011-hexdecompeval.pdf

[5] Eiter, T., Fink, M., Schüller, P., Weinzierl, A.: Finding explanations of inconsis-
tency in multi-context systems. Artif. Intell. 216, 233–274 (2014), http://dx.doi.org/
10.1016/j.artint.2014.07.008

[6] Eiter, T., Ianni, G., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining
answer set programming with description logics for the semantic web. Artificial
Intelligence 172(12-13), 1495–1539 (2008)

[7] Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: A Uniform Integration of
Higher-Order Reasoning and External Evaluations in Answer-Set Programming.
In: Kaelbling, L.P., Saffiotti, A. (eds.) 19th International Joint Conference on
Artificial Intelligence (IJCAI’05). pp. 90–96. Professional Book Center (2005),
http://www.kr.tuwien.ac.at/staff/eiter/et-archive/ijcai05-hex asp.pdf

[8] Hoehndorf, R., Loebe, F., Kelso, J., Herre, H.: Representing default knowledge in
biomedical ontologies: application to the integration of anatomy and phenotype
ontologies. BMC Bioinformatics 8, 377 (2007)

[9] Marano, M., Obermeier, P., Polleres, A.: Processing RIF and OWL2RL within
DLVHEX. In: Hitzler, P., Lukasiewicz, T. (eds.) 4th International Conference
on Web Reasoning and Rule Systems (RR’10). LNCS, vol. 6333, pp. 244–250.
Springer (2010)

[10] Nieuwenborgh, D.V., Cock, M.D., Vermeir, D.: Computing fuzzy answer sets
using dlvhex. In: Dahl, V., Niemelä, I. (eds.) 23rd International Conference on
Logic Programming (ICLP’07). LNCS, vol. 4670, pp. 449–450. Springer (2007)

[11] Nieuwenborgh, D.V., Eiter, T., Vermeir, D.: Conditional planning with external
functions. In: Baral, C., Brewka, G., Schlipf, J.S. (eds.) 9th International Confer-
ence on Logic Programming and Nonmonotonic Reasoning (LPNMR’07). LNCS,
vol. 4483, pp. 214–227. Springer (2007)

[12] Zirtiloǧlu, H., Yolum, P.: Ranking semantic information for e-government: com-
plaints management. In: 1st International Workshop on Ontology-supported Busi-
ness Intelligence (OBI’08). p. 7. No. 5 in OBI’08, ACM (2008)

6


