Engineering Domain-Specific Languages with
FORMULA 2.0

Ethan K. Jackson
Microsoft Research
One Microsoft Way
. Redmond, WA 98052
ejackson@microsoft.com

1. INTRODUCTION

Domain-specific languages (DSLs) are useful for captur-
ing and reusing engineering expertise. They can formalize
industrial patterns and practices while increasing the scal-
ability of verification, because input programs are written
at a higher level of abstraction. However, engineering new
DSLs with custom verification is a non-trivial task in its
own right, and usually requires programming language, for-
mal methods, and automated theorem proving expertise.

In this paper we present FORMULA 2.0, which is a for-
mal framework for developing DSLs. FORMULA specifica-
tions are succinct descriptions of DSLs, and specifications
can be immediately connected to state-of-the-art analysis
engines without additional expertise. FORMULA provides:
(1) succinct specifications of DSLs and compilers, (2) effi-
cient compilation and execution of input programs, (3) pro-
gram synthesis and compiler verification.

We take a unique approach to provide these features:
Specifications are written as strongly-typed |4, |7] open-world
logic programs 5], and a specialized module system supports
modularity and reuse [3]. These specifications are highly
declarative and can easily express rich program synthesis
and compiler verification problems. Automated reasoning
is enabled by efficient symbolic execution of logic programs
into quantifier-free sub-problems, which are dispatched to
the state-of-the-art SMT solver Z3 [1]. FORMULA has been
applied within Microsoft to develop DSLs for verifiable de-
vice drivers and protocols |2|. It has been used by the au-
tomotive and embedded systems industries for software and
hardware co-design [6] and design-space exploration [§] un-
der hard resource allocation constraints. It is being used to
develop semantic specifications for complex cyber-physical
systems [9].

We now highlight of the features, design principles, and
implementation approaches of FORMULA 2.0. It is released
under an open-source license and can be found at http:
//formula.codeplex.com.

2. DOMAINS

The static semantics of DSLs are specified using algebraic
data types (ADTs) and open-world logic programs (OLPs).
ADTs are used to formalize DSL syntax and the shapes of
judgments (e.g. type judgments). OLPs provide a semantic
foundation for separating DSL axioms (e.g. the definitions
of all well-typed expressions) from a specific program of the
DSL. We shall refer to a specific program of a DSL as a
program instance. We demonstrate these ideas with a small
example.

Example 1 (Deployment DSL).

1: domain Deployments

2: {

3: Service ::= new (name: String).

4 Node ::= new (id: Natural).

5 Conflict ::= new (sl1l: Service, s2: Service).
6: Deploy fun (s: Service => n: Node).
7
8

: conforms no { n | Deploy(s, n), Deploy(s’, n),
9: Conflict(s, s’) }.

Domain modules contain ADTs for language syntax and
judgments along with axioms written as logic programs. The
Deployments domain formalizes a small DSL for mapping
software services onto compute nodes: There are services,
which can be in conflict, and nodes, which can run services.
Services must be deployed to nodes such that no node exe-
cutes conflicting services. Lines [3]- [f] introduce data types
for the entities of the DSL. The conformance rule (lines [8]-
@ axiomatizes that conflicting tasks cannot run on the same
node.

Notice that a domain does not contain any information
about a specific program instance, but speaks generally about
all possible deployments. Hence, the logic program within a
domain is not a closed-world program; the sets of services,
nodes, conflicts, and deployments have not been determined.
A program instance closes the world of a domain by enumer-
ating a set of ground facts, after which the composite has the
usual closed-world semantics. Also, notice that construct-
ing a conforming program instance for the Deployments do-
main is NP-complete. It is equivalent to coloring the conflict
graph with nodes. In other words, writing statically correct
programs is hard under many abstractions.

2.1 Design and Implementation

Algebraic Data Types. Every DSL must have syntax
for programs and judgments. In practice, much energy is
spent designing just these syntactic elements of a language.
FORMULA supports this by first-class ADTs and is un-
apologetically strongly typed. For uniformity, every user
defined symbol is a data constructor and there is only one
implicit program relation K (knows). If the user wishes to
define another program relation, she can represent it using
the theory of ADTSs plus constraints on K.

For example, the rule:

IsBigNode(id) :- Node(id), id > 100.

http://formula.codeplex.com
http://formula.codeplex.com

Should really be understood as:

| K(IsBigNode(id)) :- K(Node(id)), id > 100. |

IsBigNode() looks like a unary relation on integers, but it
is really a data constructor. The previous rule axiomatizes
those IsBigNode terms that can appear in K. The only
technicality is that rule dependencies and stratification con-
ditions are defined w.r.t. the precise shapes of values placed
into K by each rule. FORMULA performs complex abstract
interpretation on rules to determine the shapes of terms that
can appear in the head of a rule.

Bottom-up fixpoints. It became clear that the logical
semantics and operational semantics needed to coincide and
be as intuitive as possible. This allows DSL specifications
to be comprehensible and robust to change. Consequently,
FORMULA uses bottom-up evaluation so that rule bodies
and rules are not as sensitive to ordering. We require strat-
ified aggregates, which simplifies the fixpoint semantics and
is rather natural for our scenarios. After all, a given static
analysis or compiler should produce a single result per in-
put program. This places more burden on our LP engine to
perform cross-rule optimizations and efficient indexing, but
it allows engineers to think of their specifications as logical
entities that happen to be executable.

Aggregates. We found aggregates to be indispensable.
Engineers use them in complex nested patterns. To support
this, we developed a syntax that mimics quantifiers with
lexical scope. Our aggregation primitive is:

{ head | body }

This represents the set of all terms that would be produced
by the rule head :- body. Such aggregates can only be
used as arguments to special operators, such as count or
no. Negation (no) is equivalent to count({head|body}) =
0. Variables introduced within an aggregation are local to
that aggregation and variables introduced in a parent lexical
scope are bound w.r.t. to child aggregations.

For example, we wish the subset K (Deploy(Service(x),n))
to behave like a relation over values K (Service(x)). The ax-
iom we desire is:

Vz,n. K(Deploy(Service(x),n)) = K(Service(x)).

As with many LP systems, this axiom becomes an integrity
constraint using negation to achieve universal quantification.

—3z,n. K(Deploy(Service(z),n)) A ~K(Service(x)).

The variable x is bound by the existential quantifier. In
FORMULA, this integrity constraint would be written as a
conforms clause with the body:

no { Deploy(s, n) | Deploy(s, n), no Service(s.name) }|

The variable s is bound in the outer aggregate, and so s.name
is fixed for each evaluation of no Service(s.name). With
this lexical scoping rule, the order in which constraints are
written is irrelevant. For example, the constraint below is
equivalent the one above:

no { Deploy(s, n) | no Service(s.name), Deploy(s, n) }|

Note that the constraint no {f(...)|f(...)} can be written
as simply no f(...).

3. MODELS

Program instances are represented as sets of well-typed
ground facts w.r.t. some domain. Model modules hold these
ground facts.

Example 2 (Several deployments).

1: model Undeployed of Deployments

2: {

3: sVoice is Service("Voice Recognition").

a: sDB is Service("Big Database").

5 n0 is Node(0).

6 nl is Node(1).

7: Conflict(sVoice, sDB).

8 F

9: model Good of Deployments extends Undeployed

10: {
11: Deploy(sVoice, n0).
12: Deploy(sDB, nl).

13: }
14: model Bad of Deployments extends Undeployed

15: {

16: Deploy(sVoice, nO).
17: Deploy(sDB, nO).

18: }

Formally, a domain D is an OLP. A model M closes D with
a set of facts, written D[M]. The properties of a model M
are those properties provable by the closed logic program
DI[M]. For example:

e Deployments[Undeployed] = conforms, because services
are not deployed to nodes.

e Deployments[Good] |= conforms, because all services
are deployed and all conflicts are respected.

e Deployments|Bad] B~ conforms, because its deployments
violate conflicts.

3.1 Design and Implementation

Module system. Models cleanly separate program in-
stances from DSL axioms. Because models themselves en-
code (possibly very large) programs, the module system for
models focuses on composing and sharing large sets of large
terms. The aliasing construct:

| x is £(...)

simultaneously introduces the fact K(f(...)) and the defini-
tion z = f(...). The scope of z is global to model module,
so x can be used wherever f(...) would be written. Theo-
retically, aliasing can allow models to be exponentially more
succinct. Practically, aliases help to factorize models into
reusable parts. Cyclic aliases cause a compile-time error.

Example 2 also shows that models can be composed through
the extends operator. In this case, the contents of a model
are unioned with the models listed to the right of extends.
Aliases from imported models are visible to importer. The
full module system is described in [3].

Requires and ensures clauses. Because models are
complex, it is often useful to make specific statements about
them. For this purpose, we provide the requires and ensures
constructs found in other languages:

| requires body. ensures body.

A model satisfies requirements if every body of the form
requires body is provable in the model. If all requirements
are provable then it should follow that every clause of the
form ensures body is provable. The requires clauses state
what we expect to be true about the model. The ensures
clauses state what we believe to follow from these expecta-
tions. Implicitly, every model is expected to conform to its
domain.

requires conforms. |

These clauses can speak about specific model elements
via aliases. However, model aliases are prefixed by % in rule
bodies to distinguish them from variables. For example:

requires %n0.id = 0, count({id | Node(id)}) = 2. |

This clause requires the model element n0 to specifically
have the id zero, and the total number of nodes in the model
to be two. The % prefix emphasizes that model aliases have
a different quantifier scope from body variables, and pre-
vents users from confusing one for the other.

4. PARTIAL MODELS

Partial models partially close domains. A partial model
P is solved by a model M if M concretizes all the facts of P
such that all requirements of P are satisfied in D[M]. In this
way, partial models describe problem instances. The partial
model below describes a specific deployment problem.

Example 3 (A deployment problem).

1: partial model SpecificProblem of Deployments

2. {

3: requires Deployments.conforms.

4:

5: sVoice is Service("Voice Recognition").
6: sDB is Service("Big Database").

7 n0 is Node(O).

8: nl is Node(1).

9: Conflict(sVoice, sDB).

10: }

The assertions in lines [l - [must hold in a solution. Line
requires a solution to conform to the Deployments do-
main. (Actually, this requirement is implicitly present.) The
Good model is a solution (Example 2, lines @] - to this
partial model. Its facts contain all the facts of Example 3
plus the missing deployment facts required to satisfy De-
ployments. conforms.

4.1 Design and Implementation

Solving. Finding a solution to a partial model is clearly
non-trivial (undecidable). It necessitates finding a finite set
of ground facts that close an OLP such that K satisfies a
property under this closure. FORMULA uses a number of
state-of-the-art techniques to solve the problem. First, it
performs cardinality arguments on P to decide the number
and shapes of facts that might be missing from the solu-
tion. Second, it symbolically closes P by possibly introduc-
ing more facts whose arguments are not concretized. Third,
it performs symbolic execution of the symbolically closed
logic program to create a set of quantifier-free constraints.
The solutions to these constraints correspond to solutions to

the original problem. Constraints are solved using the sat-
isfiability modulo theories (SMT) solver Z3. The generated
constraints can be quite complex involving many mathemat-
ical theories (e.g. ADTs, lists, bit vectors, linear arithmetic,
etc...). All built-in FORMULA operators have been care-
fully axiomatized into Z3. If these constraints are found to
be unsatisfiable, then the process repeats by increasing the
size of the symbolic closure.

Illustration. We now give an illustration of this process
on Example 3. First, Deploy is declared to behave like a
total function from services in K to nodes in K. The Speci-
ficProblem introduces two services into K, so by cardinality
arguments at least two Deploy values are missing. Two sym-
bolic Deploy values are introduced with symbolic constants
as arguments:

| Deploy (a0, b0). Deploy(al, bil).

Next, the program D[P] is symbolically executed allowing
it to make progress when encountering symbolic constants.
In this execution mode, rules produce values conditioned on
quantifier-free constraints involving only symbolic constants.
In this example, the derivation of conforms is conditioned
on the following constraints:

conforms is provable if
Deploy is functional:
(a0 = sVoice V a0 = sDB)A
(al = sVoice V al = sDB)A
(b0 =m0V b0 = nl)A
(b1 =n0 Vbl = nl)A
(a0 # al)
Deploy avoids conflicts:
—(a0 = sVoice A al = sDB A b0 = b1)A
—(al = sVoice ANal = sDB A b0 = bl)

This constraint can be repeatedly solved to generate solu-
tions to P. Unlike answer set programming (ASP), there
can be many non-minimal solutions to P. Theoretically,
these can be eliminated by placing stronger requirements on
P. Practically, FORMULA produces smaller solutions first,
because they are easier to solver.

5. TRANSFORMS

Transforms are OLPs that transform models between do-
mains. They are useful for formalizing operational seman-
tics, compilers, and product constructions.

Example 4 (A compiler).

1: transform Compile (in::Deployments)
2: returns (out::NodeConfigs)

3: {

4 out.Config(n.id, list) :-

5: n is in.Node,

6: list = toList(out.#Services, NIL,

7: { s.name | in.Deploy(s, n) }).
s: }

9: domain NodeConfigs

10: {

11: Config ::=

12: fun (loc: Natural ->

13: list: any Services + { NIL }).
14: Services ::=

15: new (name: String,

16: tail: any Services + { NIL }).
17: }

Models of the NodeConfigs domain contain node configu-
ration files (lines [9] - [[7). Each file lists the services that
run on a node. These are modeled using recursive ADTs.
The Compile transform takes a Deployments model called
in and produces a NodeConfigs model called out. This is ac-
complished by the rule in lines@- This rule converts every
node into a configuration file containing a list of services.

Transforms utilize all of the features previously discussed.
Our type system ensures transforms cannot produce mal-
formed terms. Our module system allows them to be com-
posed into more complex operations. Our requires and en-
sures clauses allows users to write additional functional prop-
erties. Our OLP semantics allows transforms to be verified
by searching for inputs that satisfy requirements but violate
ensures.

6. CONCLUSION

We have demonstrated a few of the key concepts provided
by FORMULA 2.0 for defining and reasoning about DSLs.
Additionally, domains, models, and transforms can be com-
posed to build complex specifications. Transforms can be
verified using the same model finding techniques for solving
partial models. Rules can contain rich constraints, such as
arithmetic, string, and list constraints. More information
can be found at http://formula.codeplex.com/formula.

7. REFERENCES

[1] L. M. de Moura and N. Bjgrner. Satisfiability modulo
theories: introduction and applications. Commun.
ACM, 54(9):69-77, 2011.

[2] A. Desai, V. Gupta, E. K. Jackson, S. Qadeer, S. K.
Rajamani, and D. Zufferey. P: safe asynchronous
event-driven programming. In PLDI, pages 321-332,
2013.

[3] E. K. Jackson. A module system for domain-specific
languages. TPLP, 14(4-5):771-785, 2014.

[4] E. K. Jackson, N. Bjgrner, and W. Schulte. Canonical
regular types. In ICLP (Technical Communications),
pages 73-83, 2011.

[5] E. K. Jackson, N. Bjgrner, and W. Schulte. Open-world
logic programs: A new foundation for formal
specifications. Technical Report MSR-TR-2013-55,
Microsoft Research, 2013. http://research.
microsoft.com/pubs/192963/MSR-TR-2013-55. pdf|

[6] E. K. Jackson, E. Kang, M. Dahlweid, D. Seifert, and
T. Santen. Components, Platforms and Possibilities:
Towards Generic Automation for MDA. In EMSOF'T,
pages 39-48, 2010.

[7] E. K. Jackson, W. Schulte, and N. Bjgrner. Detecting
specification errors in declarative languages with
constraints. In MoDFELS, pages 399414, 2012.

[8] E. K. Jackson, G. Simko, and J. Sztipanovits. Diversely
Enumerating System-Level Architectrues. In EMSOFT,
2013.

[9] G. Simko, D. Lindecker, T. Levendovszky, S. Neema,
and J. Sztipanovits. Formal semantics specification of
cyber-physical components integration and
composition. In MoDELS, 2013.

http://formula.codeplex.com/formula
http://research.microsoft.com/pubs/192963/MSR-TR-2013-55.pdf
http://research.microsoft.com/pubs/192963/MSR-TR-2013-55.pdf

	Introduction
	Domains
	Design and Implementation

	Models
	Design and Implementation

	Partial Models
	Design and Implementation

	Transforms
	Conclusion
	References

