
The SAT Compiler in B-Prolog

Neng-Fa Zhou
CUNY Brooklyn College & Graduate Center

March, 2013

1 Introduction

Several systematic search methods, including Dynamic Programming (DP) [7], Constraint Pro-
gramming (CP) [10], Linear Programming & Mixed Integer Programming(LP/MIP) [1], and
Boolean satisfiability (SAT) [2], are available for solving combinatorial search problems. DP
relies on memoization of solutions to subproblems to avoid redundant computations. CP uses
constraint propagation to prune search spaces and heuristics to guide search. IP relies on LP re-
laxation and branch-and-cut to find optimal integer solutions. SAT performs unit propagation
and clause learning to prune search spaces, and employs heuristics and learned clauses to do
non-chronological backtracking. No method is superior all the time. DP is useful when many
subproblems have the same or similar structures and can share solutions. CP is well suited to
problems for which global constraints, symmetry breaking, and problem-specific propagation
and labeling can be exploited. IP tends to be well suited to problems that can be naturally ex-
pressed with disequality constraints. SAT is suited to not only problems that are intrinsically
Boolean but also non-Boolean problems for which heuristics cannot be easily programmed.
Recent advancement of SAT has been the key to the success of Answer Set Programming [3].

With tabling for dynamic programming, CLP(FD), and an interface to LP/MIP solvers,
B-Prolog provides a set of useful tools for solving combinatorial search problems. Recently, the
toolbox has been enriched with a SAT compiler, which compiles constraint programs into SAT.
The B-Prolog interface to SAT comprises primitives for creating decision variables, specifying
constraints, and a built-in, called sat solve, for invoking a solver. The same interface is also
used for LP/MIP and CP solvers.

The implementation of the interface makes use of attributed variables in B-Prolog to ac-
cumulate constraints. When a constraint is posted, it is added to the list of accumulated
constraints. Only when a solver-invoking call is executed, are the constraints interpreted. If
the solver is CP invoked by cp solve, then the accumulated constraints are added into B-
Prolog’s constraint store and a labeling predicate is called to start the search. If the solver is
SAT, then all the variables are Booleanized and all the constraints are sent to the SAT solver
after being compiled into CNF. If the solver is LP/MIP invoked by lp solve or ip solve,
then all the constraints are converted to disequalities before being sent the LP/MIP solver. An
answer found by the solver is returned to B-Prolog as bindings of the decision variables.

The B-Prolog SAT compiler employs the so called log-encoding for compiling domain vari-
ables and constraints [6]. The same encoding has also been used by the Minizinc SAT compiler
[5]. Log-encoding has less propagation power than direct and support encodings for certain
constraints [4], but is much more compact than other encodings, including the order encoding
which is used by the Sugar [11] and the BEE [9] compilers.

2 Examples

This section gives two example programs in B-Prolog to illustrate the usage of the SAT compiler.
In the examples, the built-in sat solve is used to invoke the SAT solver. This built-in can

1

vmtl(N,K):-

new_array(VVars,[N]),

new_array(EVars,[N,N]),

foreach(I in 1..N, EVars[I,I] @= 0),

foreach(I in 1..N-1, J in I+1..N, EVars[I,J] @= EVars[J,I]),

term_variables((VVars,EVars),Vars),

NE is NV*(NV-1) div 2,

Vars :: 1 .. NV+NE,

K :: truncate(NV*(NV**2+3)/4) .. truncate(NV*(NV+1)**2/4),

$alldifferent(Vars),

foreach(I in 1..N, VVars[I]+sum([EVars[I,J] : J in 1..N]) $= K),

sat_solve([K|Vars]).

Figure 1: Labeling vertices and edges of a complete graph of size N.

be replaced by ip solve to call the IP solver, or by cp solve to call the CP solver. These
examples use some of the non-standard features of B-Prolog, such as arrays, loops, and list
comprehensions. Readers are referred to [12] for a survey of B-Prolog’s features and [13] for
more examples.

2.1 The Vertex Magic Total Labeling (VMTL) Problem

Given an undirected graph G = (V,E), where V is a set of vertices and E is a set of edges,
the VMTL problem is to label each of the vertices and edges with a unique integer from
{1, 2, . . . , |V | + |E|} such that the sum of the label of a vertex and the labels of its incident
edges is a constant, independent of the choice of the vertex. Figure 1 shows a program to label
a complete graph of a given size N and a constant K which is between NV*(NV**2+3)/4 and
NV*(NV+1)**2/4.

The constraint operators and names provided in the interface all begin with $. For example,
the operator for equality constraints is $= and the $alldifferent(L) constraint is equivalent
to the conjunction of the pair-wise inequality constraints ($\=) on the variables in L. The main
constraint in the problem is specified by the following loop:

foreach(I in 1..N, VVars[I]+sum([EVars[I,J] : J in 1..N]) $= K)

For each vertex I, the sum of the label of the vertex, VVars[I], and the sum of the labels of
the incident edges, sum([EVars[I,J] : J in 1..N]), is equal to K. The list comprehension
[EVars[I,J] : J in 1..N] gives a list of variables associated with the incident edges of vertex
I.

2.2 The Numberlink Problem

Numberlink is a logic puzzle made popular by Nikoli. Figure 2 gives a solution to an example
problem. Given a grid board of a certain dimension with some cells preoccupied by pairs of
numbers, the puzzle is to find a path for each pair of the same number such that no paths

2

overlap or intersect with each other. In Figure 2, the path for each pair is shown as connected
cells filled with the same number.

The problem can be generalized as a graph labeling problem as follows: given an undirected
graph G whose vertices are numbered from 1 to NV and a set of NC connection requirements in
the form connection(I, V1, V2) where 1 ≤ I ≤ NC, and V1 and V2 are vertices in G, the problem
is to label the vertices with numbers from 1 to NC such that for each connection requirement
connection(I, V1, V2) there is a path of vertices all labeled with I between the terminal vertices
V1 and V2. We assume that the edges of a graph are given as a predicate edge/2 and the
predicate neighbors(V,Neibs) is given that can be used to retrieve the neighbors of a vertex.

A simple model is to use a domain variable for each vertex to indicate its label. Figure 3
shows an implementation of this model. The loop

foreach(C in 1..NC, [V1,V2], (connection(C,V1,V2), Arr[V1] @= C,Arr[V2]@=C))

initializes the pre-occupied vertices. For each connection requirement connection(C,V1,V2),
where V1 and V2 are local to C, the label of V1 (Arr[V1]) and the label of V2 (Arr[V2]) are
initialized to C.

The predicate constrain vertex(Arr,V) ensures that the label assigned to the vertex V

meets the requirement. If V is a terminal vertex in a connection requirement, then only one
neighbor can receive the same label as V; otherwise, there are two neighbors with the same
label as V.

1 1 1 6 6 6 4 4 4 4
1 7 7 7 7 6 6 6 6 4
1 7 5 5 5 5 5 5 6 4
1 7 5 2 2 6 6 6 6 4
1 7 5 2 3 6 4 4 4 4
1 7 5 2 3 6 6 6 6 6
1 7 5 2 3 3 3 3 3 3
1 7 5 2 2 2 2 2 2 3
1 7 5 1 1 1 1 1 2 3
1 1 1 1 3 3 3 3 3 3

Figure 2: A solution to a numberlink problem.

3 Implementation and Experimental Results

The B-Prolog SAT compiler adopts log-encoding for encoding domain variables and constraints.
For a domain variable, dlog2(n)e Boolean variables are used, where n is the maximum absolute
value of the domain. If the domain contains both negative and positive values, then another
Boolean variable is used to encode the sign. Each combination of values of these Boolean
variables represents a valuation for the domain variable. If there are holes in the domain, then
inequality constraints are generated to disallow assignments of those hole values to the variable.
Equality and disequality constraints are flattened to two types of primitive constraints in the
form of x > y and x + y = z, which are compiled further to logic adders and comparators in
CNF. For other types of constraints, clauses are generated to disallow conflict values of the
variables’ domains.

3

numberlink(NV,NC):-

new_array(Arr, [NV]),

term_variables(Arr, Vars),

Vars::1..NC,

foreach(C in 1..NC, [V1,V2], (connection(C,V1,V2), Arr[V1] @= C, Arr[V2]@=C)),

foreach(V in 1..NV,constrain_vertex(Arr,V)),

sat_solve(Vars),

writeln(Vars).

constrain_vertex(Arr,V1):-

neighbors(V1,Neibs),

((connection(C,V1,_); connection(C,_,V1))->

sum([(Arr[V2]$=C) : V2 in Neibs]) $= 1

;

sum([(Arr[V1]$=Arr[V2]) : V2 in Neibs]) $= 2

).

Figure 3: A model for the Numberlink problem.

It is time consuming to compile constraints that involve a large number of variables. In or-
der to speed up compilation, the SAT compiler enforces interval consistency of the constraints
before compilation and exploits bounds information of domains to avoid enumerating all per-
mutations of domain values to find conflict values. In particular, for some constraints that
involve only Boolean domain variables, it never enumerates all the permutations. For example,
if the constraint is B1+B2+...+Bn $\= 0 where Bis are all Boolean variables, it converts the
constraint to the clause B1 $\/ B2 $\/ ... $\/ Bn without enumerating the values.

The SAT compiler, combined with the SAT solver Lingeling [8], has solved some problem
instances that were considered hard. For the VMTL problem, the solver found a constant
(K=467) and a labeling for the complete graph of size 12 in 600 seconds on a PC with an i5
CPU (2.4GHz and 4GB). The generated CNF file contains 2547 variables and 248497 clauses.
In [9], only complete graphs of sizes 8 and 10 are considered.

Figure 4 gives a solution to a hard Numberlink instance1, which was found with a 0-1 IP
model in about 200 seconds. The generated CNF file for this program contains 122265 variables
and 2095791 clauses.

The SAT compiler competed in the Minizinc Challenge 2012. The entered version supported
only two global constraints: $alldifferent and $element. Table 1 shows the scores of the
submitted solver on the benchmarks that do not use any global constraints. The BP+Lingeling
solver scored 48 points. In contrast, the winning solver of the free-search category, Gecode,
scored 52 points.

1This instance was submitted to the Third ASP Competition but was not used in the competition, probably
because it was too hard.

4

Figure 4: A solution to a hard Numberlink problem.

Table 1: Scores in Minizinc Challenge 2012
Benchmark BP+Lingeling Gecode

amaze2 6 0

fast-food 0 10

parity-learning 6 8

project-planning 10 2

radiation 6 2

ship-schedule 0 10

solbat 6 4

still-life-wastage 4 6

train 0 10

vrp 10 0

Total 48 52

5

4 Conclusion

Combinatorial search programs are both time-consuming and memory-demanding. It normally
requires extensive experimentation to find a right model and a right solver. The addition of a
SAT compiler into B-Prolog enriches the toolbox for experimentation. The common interface
for CP, SAT, and MIP makes it seamless to switch among different solvers. The future work
is to extend the compiler to support global constraints.

References

[1] Gautam M. Appa, Leonidas Pitsoulis, and H. Paul Williams. Handbook on Modelling for
Discrete Optimization. Springer, 2010.

[2] Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh. Handbook of Satisfiability.
IOS Press, 2009.

[3] Gerhard Brewka, Thomas Eiter, and Miroslaw Truszczynski. Answer set programming at
a glance. Commun. ACM, 54(12):92–103, 2011.

[4] Marco Gavanelli. The log-support encoding of CSP into SAT. In CP, pages 815–822, 2007.

[5] Jinbo Huang. Universal Booleanization of constraint models. In CP, pages 144–158, 2008.

[6] Kazuo Iwama and Shuichi Miyazaki. SAT-varible complexity of hard combinatorial prob-
lems. In IFIP Congress (1), pages 253–258, 1994.

[7] Art Lew and Holger Mauch. Dynamic Programming: A Computational Tool. Springer,
2009.

[8] Lingeling. fmv.jku.at/lingeling.

[9] Amit Metodi and Michael Codish. Compiling finite domain constraints to SAT with BEE.
TPLP, 12(4-5):465–483, 2012.

[10] Francesca Rossi, Peter van Beek, and Toby Walsh. Handbook of Constraint Programming.
Elsevier, 2006.

[11] Naoyuki Tamura, Akiko Taga, Satoshi Kitagawa, and Mutsunori Banbara. Compiling
finite linear CSP into SAT. Constraints, 14(2):254–272, 2009.

[12] Neng-Fa Zhou. The language features and architecture of B-Prolog. TPLP, Special Issue
on Prolog Systems, 12(1-2):189–218, 2012.

[13] Neng-Fa Zhou, Salvador Abreu, and Ulrich Neumerkel. How to solve it with B-Prolog?
ALP Newsletter, (June), 2010.

6

