Representing Actions
in Extended Logic Programming

Michael Gelfond
Department of Computer Science

University of Texas at El Paso
El Paso, TX 79968

Vladimir Lifschitz
Department of Computer Sciences
and Department of Philosophy

University of Texas at Austin
Austin, TX 78712

Abstract

‘We represent properties of actions in a logic programming language
that uses both classical negation and negation as failure. The
method is applicable to temporal projection problems with incomplete
information, as well as to reasoning about the past. It is proved to be
sound relative to a semantics of action based on states and transition
functions.

1 Introduction

This paper extends the work of Eshghi and Kowalski [4], Evans (5] and Apt
and Bezem [1] on representing properties of actions in logic programming
languages with negation as failure.

Our goal is to overcome some of the limitations of the earlier work.
The existing formalizations of action in logic programming are adequate
for only the simplest kind of temporal reasoning—“temporal projection.”
In & temporal projection problem, we are given a description of the initial
state of the world, and use properties of actions to determine what the world
will look like after a series of actions is performed. Moreover, the existing
formalizations can be used for temporal projection only in the cases when the
given description of the initial state is complete. The reason for that is that
traditional logic programming languages automatically apply the “closed
world assumption” to each predicate.

560

We are interested here in temporal reasoning of & more general kind, when
the values of some fluents! in one or morve situations are given, and the goal is
to derive other facts about the values of fluents. Besides temporal projection,
this class of reasoning problems includes, for instance, the cases when we
want to use information about the current state of the world for answering
questions about the past?. The view of logic programming accepted in this
paper is strictly declarative. The adequacy of a representation of a body
of knowledge in a legic programming language means, to us, adequacy with
respect to the declarative semantics of that language. It is- interesting to
find out, of course, whether any of the currently available query evaluation
procedures will actually terminate if used for answering questions on the
basis of our representation, and how fast, but those are secondary issues.
In fact, the language of “extended logic programs” used in this paper is a
subset of the system of default logic from [16], and our work can be viewed
as a development of the approach to temporal reasoning based on nonnormal
defaults [15].

Two parts of this paper may be of more general interest.

First, we introduce here a simple declarative language for describing
actions, called A. Traditionally, ideas on representing properties of actions
in classical logic or nonmonotonic formalisms are explained on specific
examples, such as the “Yale shooting problem” from [9]. Competing
approaches are evaluated and compared in terms of their ability to handle
such examples. Sandewall [17] provides a systematic comparison of the most
important approaches by applying them fo a rather long series of problems
of this kind. We propose to supplement the use of examples by a different
method. A particular methodology for representing action can be formally
described as a translation from A, or from a subset or a superset of A, into
a “target language”—for instance, into a language based on classical logic
or on circumscription. The soundness and completeness of each particular
translation become precise mathematical questions; the possibilities and
limitations of each methodology can be described in terms of the “dialects” of
A to which it is applicable. Our method for describing properties of actions
in logic programming is presented here as a translation from 4 into the
language of extended logic programs, and the soundness of this translation
is the main technical result of the paper.

Second, the proof of the main theorem depends on a relationship befween
stable models [7] and signings [L1], that may be interesting as a part of the
general theory of logic programming.

The language A is introduced in Section 2, and Section 3 is a brief review
of extended logic programs. Our translation from A into logic programming
is defined in Section 4, and the soundness theorem is stated in Section 5.
Section 6 contains the lemmas that relate stable models to signings. The
proof of the soundness theorem can be found in the complete version of this

paper.

561

2 A Language for Describing Actions

A description of an action domain in the language A consists of “propo-
sitions” of two kinds. A “v-proposition” specifies the value of a fluent in
a particular situation—either in the initial situation, or after performing a
sequence of actions. An “e-proposition” describes the effect of an action on
a fluent.

We begin with two disjoint nonempty sets of symbols, called fiuent names
and action names. A fluent expression is a fluent name possibly preceded by
-. A v-proposition is an expression of the form

F after Ay;...; A, (1)

where F is a fluent expression, and A;,...,4,, (m > 0) are action names. If
m = 0, we will write (1) as
initially F.

An e-proposition is an expression of the form
Acauses Fif Py,...,P,, (2)

where A is an action name, and each of F,P,...,P, (n > 0)is a fluent
expression. About this proposition we say that it describes the effect of A
on I, and that Pi,..., P, are its preconditions. If n = 0, we will drop if
and write simply

A causes F.

A proposition is a v-proposition or an e-proposition. A domain
description, or simply domain, is a set of propositions (not necessarily finite).

Example 1. The Fragile Object domain, motivated by an example from
(18], has the fluent names Holding, Fragile and Broken, and the action Drop.
It consists of two e-propositions:

Drop causes ~Holding if Holding,
Drop causes Broken if Holding, Fragile.

Example 2. The Yale Shooting domain, motivated by the example from
[9] mentioned above, is defined as follows. The fluent names are Loaded
and Alive; the action names are Load, Shoot and Wait. The domain is
characterized by the propositions

initially - Loaded,

initially Alive,

Load causes Loaded,

Shoot causes —Alive if Loaded,
Shoot causes ~Loaded.

562

Example 3. The Murder Mystery domain, motivated by an example from
[2], is obtained from the Yale Shooting domain by substituting

~Alive after Shoot; Wait (3)

for the proposition initially = Loaded.

Example 4. The Stolen Car domain, motivated by an example from [10],

has one fluent name Stolen and one action name Wait, and is characterized
by two propositions:

initially —Stolen,
Stolen after Wait; Wait; Wait.

To describe the semantics of A, we will define what the “models” of &
domain description are, and when a v-proposition is “entailed” by a domain
description.

A state is a set of fluent names. Given a fluent name F and a state o, we
say that F' holdsin ¢ if F € o; ~F holdsin o if F & 0. A transition funetion
is a mapping @ of the set of pairs (4, o), where A4 is an action name and ¢
is a state, into the set of states. A structure is a pair (gg, ®), where oy is a
state (the initial state of the structure), and ® is a transition fanction.

For any structure M and any action names Aiy.o o, A, by MAS5Am e
denote the state

@(Am, @(Am—ly ey (P(Ah 00) LE))?

where @ is the transition function of M , and oy is the initial state of M. We
say that a v-proposition (1) is true in a structure M if F holds in the state
MAv-iAm and that it is false otherwise. In particular, a proposition of the
form initially F is true in M iff F" holds in the initial state of M.

A structure (oo, ®) is a model of a domain description D if every v-
proposition from D is true in (oq, &), and, for every action name A, every
fluent name F, and every state o, the following conditions are satisfied:

i) if D includes an e-proposition describing the effect of 4 on F whose
g
preconditions hold in o, then F € ®(4,0);

(ii) if D includes an e-proposition describing the effect of 4 on —=F whose
preconditions hold in ¢, then F ¢ &(4, o);

(iii) if D does not include such e-propositions, then F € ®(4,0) iff F € o.

It is clear that there can be at most one transition function & satisfying
conditions (i)-(iii). Consequently, different models of the same domain
description can differ only by their initial states. For instance, the Fragile
Object domain (Example 1) has 8 models; whose initial states are the subsets
of

{Holding, Fragile, Broken};

in each model, the transition function is defined by the equation

. _ [o\ {Holding} U {Broken}, if Fragile € o,
G = {c \ {Holding}, otherwise.

A domain description is consistent if it has a model, and complete if it has
exactly one model. The Fragile Object domain is consistent, but incomplete.
The Yale Shooting domain (Example 2) is complete; its only model is defined
by the equations

oo = {Alive},

®(Load, o) = o U {Loaded},

&(Shoot, o) = {a \ {Loaded, Alive}, if Loaded € o,
g o, otherwise,

®(Wait, o) = 0.

The Murder Mystery domain (Example 3) is complete also; it has the same
transition function as Yale Shooting, and the initial state {Loaded, Alive}.
The Stolen Car domain (Example 4) is inconsistent.

A v-proposition is entailed by a domain description D if it is true in
every model of D. For instance, Yale Shooting entails

—Alive after Load; Wait; Shoot.
Murder Mystery entails, among others, the propositions
initially Loaded

and
~Alwe after Wait; Shoot.

Note that the last proposition differs from (3) by the order in which the two
actions are executed. This example illustrates the possibility of reasoning
about alternative “possible futures” of the initial situation.

Although the language A is adequate for formalizing several interesting
domains, its expressive possibilities are rather limited. The only fluents
available in A are propositional ones. It is impossible to say in A that certain
fluents are related in some way (for instance, that F1 and F2 canmot be
simultaneously true); for this reason, actions described in A have no indirect
effects (“ramifications”). Every action is assumed to be executable in any
situation. We cannot talk about the duration of actions, or describe actions
that are nondeterministic, or are performed concurrently. The inconsistency
of the Stolen Car domain illustrates the fact that .4 cannot be used for
representing “causal anomalies,” or “miracles” [12]%. Defining and studying
extensions of A is a topic for future work.

The entailment relation of A is nonmonotonic, in the sense that adding an
e-proposition to a domain description D may nonmonotonically change the
set of propositions entailed by D. (This cannot happen when a v-proposition

is added.) For this reason, a modular translation from A into another
declarative language (thatis, a translation that processes propositions one by
one) can be reasonably adequate only if this othér language is nonmonotonic
also.

3 Extended Logic Programs

Representing incomplete information in traditional logic programming lan-
guages is difficult, because their semantics is based on the aitomatic applica-
tion of the closed world assumption to all predicates. Given a ground query,
a traditional logic programming system can produce only one of two answers,
yeés or no; it will never tell us that the truth value of the query cannot be
determined on the basis of the information included in the program.

Extended logic programs, introduced in [8], are, in this sense, different.
The language of extended programs distinguishes between negation as failure
not and classical negation —. The general form of an extended rule is

Lo~ Li,...;Lpnynot Ly, . oo, not Ly, (4)

where each L; is a literal, that is, an atom possibly preceded by =. An
extended program is a set of such rules. Here is an example:

b,

g =P

T = TP, (5)
t «— —g, not s,

% «— not —u.

Intuitively, these rules say:

p is true;

¢ is false if p is true;

r is true if p is false;

t is true if ¢ is false and there is no evidence that s is true;
w is true if there is no evidence that it is false.

The answers that an implementation of this language is supposed to give:
to the ground queries are:

p: o yes,
g: hno,
r: unknown,
$: unknown,
L yes,
Ui yes.

565

The semantics of extended logic programs defines when a set of ground
literals is an answer set of a program [8]. For instance, the program (5) has
one answer set, {p, g, t, u}.

The answer sets of a program can be easily characterized in terms of
default logic. We will identify the rule (4) with the default

LinN...A Ly :Lm+1,...,z:/L0 (6)

(I stands for the literal complementary to L). Thus every extended program
can be viewed as a default theory, The answer sets of a program are simply
its extensions in the sense of default logic, intersected with the set of ground
literals ([8], Proposition 3).

4 Describing Actions by Logic Programs

Now we are ready to define the translation = from A into the language of
extended programs.

About two different e-propositions we say that they are similar if they
differ only by their preconditions. Our tramnslation method is defined
for any domain description that does mot contain similar e-propositions.
This condition prohibits, for instance, combining in the same domain such
propositions as

Shoot causes ~Alive if Loaded,
Shoot causes - Alive if VeryNervous.

(VeryNervous refers to the victim, of course—not to the gun.)

Let D be a domain description without similar e-propositions., The
corresponding logic program mD uses variables of three sorts: situation
variables s,s',. .., fluent variables f, f',..., and action variables a,d’,.. 4.
Its only situation constant is S0; its fluent constants and action constants
are, respectively, the fluent names and action names of . There are also
some predicate and function symbols; the sorts of their arguments and values
will be clear from their use in the rules below.

The program 7D will consist of the translations of the individual
propositions from D and the four standard rules:

Holds(f, Result(a, s)) — Holds(f,s), not Noninertial(f, a, s), (1)
~Holds(f, Result(a, s)) « = Holds(f, s), not Noninertial(f,a,s),

Holds(f, s) « Holds(f, Resuli(a, s)), not Nondnertial(f,a,s),
~Holds(f,s) « —Holds(f, Result(a, s)), not Noninertial(f,,s).

These rules are motivated by the “commonsense law of inertia,” according to
which the value of a fluent after performing an action is normally the same
as before. The rules (7) allow us to apply the law of inertia in reasoning
“from the past to the future”: the first—when a fluent is known to be true

(8)

in the past, and the second—when it is known to be false. The rules (8)
play the same role for reasoning “from the future to the past.” The auxiliary
predicate Noninertial is essentially an “abnormality predicate” [13].

Now we will define how = translates v-propositions and e-propositions,
The following notation will be useful: For any fluent name F,

|F|is F, |-~F|is F,

and, if ¢ is a situation term, Holds(~F, t) stands for - Holds(F,t). The last
convention allows us to write Holds(F,t) even when F is a fluent name
preceded by -. Furthermore, if 4;,...,4,, are action names, [As;, s B)
stands for the term

Result(Am, Result(Am_y, . .., Result(Ay, 58) .)

It is clear that every situation term without variables can be represented in
this form.
The trahslation of a v-proposition (1) is

Holds(F, [Ay;...;4m]). 9)
For instance, r(initially Alive) is
Holds(Alive, $0),
and 7 (~Alwe after Shoot) is
~Holds(Alive, Result(Shoot, S0)).

The translation of an e-proposition (2) consists of 22 + 2 rules. The first
of them is

Holds(F, Result(4,s)) «— Holds(Pi,s),. .., Holds(P,,s). (10)

It allows us to prove that F will hold after A, if the preconditions are
satisfled. The second rule is

Noninertial(|F}, A, 5) «— not Holds(P,, s),. .., not Holds(P,, s) (11)

(Holds(P;,s) is the literal complementary to Holds(P;,s).) It disables the
inertia rules (7), (8) in the cases when f can be affected by a. Without this
rule, the program would be contradictory: We would prove, using a rule of
the form (10), that an unloaded gun becomes loaded after the action Load,
and also, using the second of the rules (7), that it remains unloaded!

Note the use of not in (11). We want to disable the inertia rules not
only when the preconditions for the change in the value of F' are known
to hold, but whenever there is no evidence that they do not hold. If, for
instance, we do not know whether Loaded currently holds, then we do not

57

want to conclude by inertia that the value of Alive will remain the same after
Shoot. We cannot draw any conclusions about the new value of Alive. If we
replaced the body of (11) by Holds(Py,s),. .., Holds(P,,s), the translation
would become unsound.

Besides (10) and (11), the translation of (2) contains, for each 7 (1 <4 <
n), the rules

Holds(P;, s) « Holds(F,s), Holds(F, Result(A, s)) (12)

and

Holds(F;, s) « Holds(F, Result(A4, s)),
Holds(P,s),..., Holds(Pi_1,s), (13)
Holds(Piy1,5),. .., Holds(P,,).

The rules (12) justify the following form of reasoning: If the value of F has
changed after performing A, then we can conclude that the preconditions
were satisfled when A was performed. These rules would be unsound in the
presence of similar propositions. The rules (13) allow us to conclude that a
precondition was false from the fact that performing an action did not lead
to the result described by an effect axiom, while all other preconditions were
true.

We will illustrate the translation process by applying it to Yale Shooting
(Example 2). The translation of that domain includes, in addition to (7)
and (8), the {following rales:

Y1. ~Holds(Loaded, S0).

Y2. Holds(Alive, S0).

Y3. Holds(Loaded, Result(Load, s)).

Y4. Noninertial(Loaded, Load, s).

Y'5. —~Holds(Alive, Result(Shoot, s)) « Holds(Loaded, s).

Y'6. Noninertial(Alive, Shoot, s) « not -~ Holds(Loaded, s).

Y7. Holds(Loaded, s) — Holds(Alive, s),~Holds(Alive, Result(Shoot,).
Y'8. ~Holds(Loaded, s) + Holds(Alive, Result(Shoot, s)).

Y'9. < Holds(Loaded, Result(Shoot, s)).

Y'10. Noninertial(Loaded, Shoot, s).

It is instructive to compare this set of rules with the formalization of Yale
Shooting given by Apt and Bezem [1], who were only interested in temporal
Projection problems, and did not use classical negation. Instead of our four
inertia rules, they have one, corresponding to the first of the rules (7). In
addition, their program includes counterpartsof Y2, Y3, Y5 and Y 6. It does
not tell us whether Loaded holds in the initial situation, but the negative
answer to this question follows by the closed world assumption. Their rule

corresponding to ¥'5 does not have - in the head, of course; instead, the
new fluent Dead is used. In their counterpart of Y6, the combination not -
is missing; this does not lead to any difficulties, because the closed world
assumption is implicitly postulated.

5 Soundness Theorem

We say that a ground literal L is entailed by an extended logic program, if
it belongs to all its answer sets (or, equivalently, to all its extensions in the
sense of default logic). Using this notion of entailment and the entailment
relation for the language A introduced in Section 2, we can state a result
expressing the soundrness of the translation «.

Soundness Theorem. Let D be a domain description without similar e-
propositions. For any v-proposition P, if =D entails mP, then D entails
i

For an inconsistent D, the statement of the soundness theorem is
trivial, because such D entails every v-proposition. For consistent domain
descriptions, the statement of the theorem is an immediate consequence of
the following lemma which will be proved elsewhere:

Soundness Lemma. Let D be a consistent domain description without
similar e-propositions. There exists an answer set Z of =D such that, for
any v-proposition P, if 7P € Z then D entails P.

Note that the lemma asserts the possibility of selecting Z uniformly for
all P; this is more than is required for the soundness theorem.

The set Z from the statement of the lemma is obviously consistent,
because a consistent domain description cannot entail two complementary
v-propositions. Consequently, if D is consistent and does not include similar
v-propositions, then 7.D has a consistent answer set.

The converse of the soundness theorem does not hold, so that the
translation 7 is incomplete. This following simple counterexample belongs
to Thomas Woo (personal communication). Let D be the domain with one
fluent name F and one action name A, characterized by two propositions:

A after F,
A causes Fif F.

It is clear that D entails initially . But the translation of this proposition,
Holds(F, §0), is not entailed by 7D. Indeed, it is easy to verify that the set
of all positive ground literals other than Holds(F, S0) is an answer set of
wD.

6 Answer Sets and Signings

To prove the soundness lemma, we need the following definition. Let II be a
general logic program (that is, an extended program that does not contain
classicel negation). A signing for II is atty set S of ground atoms such that,
for any ground instance

By & By,...,Bn,n0t Byy1,...,not By,
of any rule from II, either
BO)Blz"'aBm € Sv Bm+17"'an gs

or .
Bo,Bl,...,Bm ¢S, Bm+1,...,Bn ES.S

For example, {p} is a signing for the program
pemnotq, g+=mnotp, T+q.

In this section we show that the answer sets of a general program II
which has a signing § can be characterized in terms of the fixpoints of a
monotone operator. Specifically, for any set X of ground atoms, let X be
the symmetric difference of X and .5:

X = (X\S)u(I\X).
Obviously, 6 is one to one. Moreover, it is clear that 8 is an involution:

XA HU S\ XN\ STULS\ (X \S)u S\ X))}
(X\5u(snXx)
x

62X

1l

We will define a monotone operator ¢ such that any X is an answer set of
ILif and only if 4X is a fixpoint of ¢.

Recall that, for general logic programs, the notion of an answer set (or
“stable model”) can be defined by means of the following construction [7].
Let II be a general logic program, with every rule replaced by all its ground
instances. The reduct TI¥X of II relative to a set X of ground atoms is
obtained from IT by deleting

(i) each rule that has an expression of the form not B in its body with
Be X, and

(ii) all expressions of the form not B in the bodies of the remaining rules.

Clearly, II¥ is a positive program, and we can consider its “minimal
model”—the smallest set of ground atoms closed under its rules. If this
set coincides with X, then X is an answer set of II.

570

This condition can be expressed by the equation X = oII¥, where « is
the operator that maps any positive program to its minimal model.
Let § be a signing for II. The operator ¢ is defined by the equation

$X = fall®X.

Lemma 1. A set X of ground atoms is an answer set of Il iff X is a
fixpoint of ¢.

Proof. By the definition of ¢, X is a fixpoint of ¢ iff
Ball”X = 6x.
Since § is one-to-one and an involution, this is equivalent to

oIl = X.

Note that, since § is an involution, Lemma 1 can be also stated as follows:
X is an answer set of I iff X = Y for some fixpoint Y of ¢.

Lemma 2. The operator ¢ is monotone.

Proof. Let II; be the set of all rules from I whose heads belong to .S, and
let II; be the set of all remaining rules. Clearly, for any X,

P = 0 ung,

Since S is a signing for II, all atoms occurring in H{(belong to S, and all
atoms occurring in II¥ belong to the complement of §. Consequently, 174
and TI¥ are disjoint, and

all* = alif U oI,

Furthermore, for any expression of the form not B occurring in II;, B does
not belong to S; consequently,

0¥ = oS,

Similarly, for any expression of the form not B occurring in II;, B belongs
to S, so that
¥ = mns,

Consequently, for every X,
olt¥ = aTlfVS U ammfns,

[n particular,
Il = aIIfX\b Wi x e,

571

It is clear from the definition of § that
X\ S =X\5,
6XNnS=5\X.

We conclude that
all?X = aHf\S U aHf\X.

By the choice of II1 and II,, aﬂf\s is contained in S, and aIIIZS\X is disjoint
with §. Consequently,
aIl?% \ 5= aﬂg\x,

S\all®® = §\ Ty’
Hence
$X = 6all®% = (oIl \ §)U (S \ oI) = oI \¥ U (§\ oIIF).

Since a is monotone, and the reduct operators X ~ II¥X are antimonotone,
it follows that ¢ is monotone.

Having proved Lemmas 1 and 2, we can use properties of the fixpoints
of monotone operators given by the Knaster-Tarski theorem [20] to study
the answer sets of a program with a signing. The Knaster-Tarski theorem
asserts, for instance, that every monotone operator has a fixpoint; this gives
a new, and more direct, proof of the fact that every general program with
a signing has at least one answer set.® Moreover, it asserts that a monotone
operator has a least fixpoint, which is also its least pre-fixpoirnt. (A pre-
fixpoint of ¢ is any set X such that ¢X C X.) This characterization of the
leagt fixpoint of ¢ is used in the proof of the soundness lemma.,

Footnotes

1. A fluent is something that may depend on the situation, as, for instance,
the location of a moveable object [14]. In particular, propositional fluents
are assertions that can be true or false depending on the situation.

2. One possible way to represent reasoning about the past in the framework
of logic programming is to interpret it as “explanation” and “abduction”
[19]. Our approach is more symmetric; we treat both reasoning about the
future and reasoning about the past as “deductive.” The precise relationship
between the two approaches is a subject of further investigation

3. Our preferred approach to causal anomalies is to view them as evidemnce
of unknown events that occur concurrently with the given actions and
contribute to the properties of the new situation.

4. Using a sorted language implies, first of all; that all atoms in the rules of
the program are formed in accordance with the syntax of sorted predicate

572

logic. Moreover, when we speak of an instance of a rule, it will be always
assumed that the terms substituted for variables are of approptiate sorts.

5. This is slightly different from the original definition [11].

6. The existence of answer sets for such programs, and for programs of some
more general types, was established by Phan Minh Dung [3] and Frangois
Fages [6].

Acknowledgements

We would like to thank G. N, Kartha and Norman McCain for comments
on a draft of this paper, Kenneth Kunen for directing us to his paper on
signings, and Thomas Woo for the counterexample reproduced in Section
5. This research was supported in part by NSF grants IRI-9101078 and
IRI-9103112.

References

[1] Krzysztof Apt and Marc Bezem. Acyclic programs. In David Warren
and Peter Szeredi, editors, Logic Programming: Proc. of the Seventh
Int’l Conf., pages 617-633, 1990.

[2] Andrew Baker. Nonmonotonic reasoning in the framework of situation
calculus. Artificial Intelligence, 49:5-23, 1991.

[3] Phan Minh Dung. On the relations between stable and well-founded
semantics of logic programs. Theoretical Computer Science, 1992. To
appear.

[4] Kave Eshghi and Robert Kowalski, Abduction compared with negation
as failure. In Giorgio Levi and Maurizio Martelli, editors, Logic
Programming: Proc. of the Sizth Int’l Conf., pages 234-255, 1989.

[5] Chris Evans. Negation-as-failure as an approach to the Hanks and
McDermott problem. In Proc. of the Second Int’l Symp. on Artificial
Intelligence, 1989.

[6] Frangois Fages. Counsistency of Clark’s completion and existence of
stable models. Journal of Methods of logic in computer science, 1992.
To appear.

[7] Michael Gelfond and Vladimir Lifschitz. The stable model semantics for
logic programming. In Robert Kowalski and Kenneth Bowen, editors,
Logic Programming: Proc. of the Fifth Int’l Conf. and Symp., pages
1070-1080, 1988.

I S O oADK

[8] Michael Gelfond and Vladimir Lifschitz. Classical negation in logic
programs and disjunctive databases. New Generation Computing,
9:365-385, 1991.

[9] Steve Hanks and Drew McDermott. Nonmonotonic logic and temporal
projection. Artificial Intelligence, 33(3):379-412, 1987.

[10] Henry Kautz. The logic of persistence. In Proc. of AAAILS6, pages
401-405, 1986.

[11) Kenneth Kunen. Signed data dependencies in logic programs. Journal
of Logic Programming, 7(3):231-245, 1989.

(12] Vladimir Lifschitz and Arkady Rabinov. Miracles in forma) theories of
actions. Artificial Intelligence, 38(2):225-237, 1989.

(13] John McCarthy. Applications of circumscription to formalizing common
sense knowledge. Artificial Intelligence, 26(3):89-116, 1986.

[14] John McCarthy and Patrick Hayes. Some philosophical problems from
the standpoint of artificial intelligence. In B. Meltzer and D. Michie,
editors, Machine Intelligence, volume 4, pages 463-502. Edinburgh
University Press, Edinburgh, 1969.

[15] Paul Morris. The anomalous extension problem in default reasoning.
Artificial Intelligence, 35(3):383-399, 1988.

[16] Raymond Reiter. A logic for default reasoning. Artificial Intelligence,
13(1,2):81-132, 1980.

[17] Erik Sandewall. Features and fluents. Technical Report LiTH-IDA-R-
91-29, Linkdping University, 1992.

[18] Lenhart Schubert. Monotonic solution of the frame problem in the
situation calculus: an efficient method for worlds with fully specified
actions. In H.E. Kyburg, R. Loui, and G. Carlson, editors, Knowledge
Representation and Defeasible Reasoning, pages 23-67. Kluwer, 1990.

[19] Murray Shanahan. Prediction is deduction but explanation is abduc-
tion. In Proc. of IJCAI-89, pages 1055-1060, 1989,

[20] Alfred Tarski. A lattice-theoretical fixpoint theorem and its applica-
tions. Pacific Journal of Mathematics, 5:285-309, 1955.

