
ProbLog

Angelika Kimmig1, Bernd Gutmann1,
Theofrastos Mantadelis1, Guy Van den Broeck1,

Vı́tor Santos Costa2, Gerda Janssens1, Luc De Raedt1

1Department of Computer Science, K.U. Leuven, Belgium
2CRACS-INESC LA and DCC/FCUP, Portugal

ProbLog [1] is a probabilistic programming language that extends Prolog
along the lines of Sato’s distribution semantics. Its development focusses espe-
cially on machine learning techniques and implementation aspects. The ProbLog
implementation is publicly available as part of Yap Prolog at http://www.dcc.
fc.up.pt/~vsc/Yap/ [2]; more information, including all publications, can be
found at http://dtai.cs.kuleuven.be/problog.

From a modeling perspective, a ProbLog program has two parts: a proba-
bilistic part that defines a probability distribution over truth values of a subset
of the program’s Herbrand base, and a logical part that derives truth values of
remaining atoms just as in Prolog. While the latter part simply contains Pro-
log clauses, the former is specified by probabilistic facts p :: fact, meaning that
fact is true with probability p. All these are probabilistically independent;
in case they contain variables, all ground instances are independent as well.
For ease of modeling, ProbLog also allows the use of annotated disjunctions
p1 :: h1; . . . ; pn :: hn ← body with

∑n
i=1 pi ≤ 1, meaning that if body is true, one

of the hi will be true according to the specified probabilities pi. If the proba-
bilities do not sum to one, it is also possible that none of the hi is true (with
probability 1 −

∑n
i=1 pi). Annotated disjunctions are internally preprocessed

into probabilistic facts.
The following ProbLog program models a tiny social network, where any

two persons living in the same town are either friends, family, colleagues, or in
no direct relationship at all, and any two persons live in the same town with a
probability of 0.3. Based on these direct relationships, the predicate knows/2

then allows one to infer indirect connections as well.

person(ann). person(bob). person(cat). person(dan). person(ed).

0.2 :: link(A, B, friend);0.2 :: link(A, B, family); 0.1 :: link(A, B, work)

← person(A), person(B), same town(A, B).

0.3 :: same town(A, B).

knows(A, B) : − path(A, B, T).

path(A, B, T) : − link(A, B, T).

path(A, B, T) : − link(A, C, T), path(C, B, T).

The main inference task addressed in ProbLog is that of calculating the
probability that a query, for instance ?- knows(ed,ann), succeeds in a ran-

1



domly sampled program. The ProbLog implementation offers both exact and
approximate inference methods. Exact inference is based on the set of all proofs
of a query, while approximate inference methods either use a subset of proofs
only (with the single most likely proof as an extreme case) or obtain an esti-
mate by sampling large numbers of possible worlds. To calculate probabilities
conditioned on evidence, we have recently introduced an alternative approach
based on weighted CNFs [3].

ProbLog has been and still is used as a tool to develop various machine learn-
ing techniques and to explore different directions for extensions. We have intro-
duced parameter learning methods that estimate fact probabilities for a given
program based on either queries or proofs annotated with their success prob-
ability [4] or on (partial) interpretations [5]. ProbLog theory compression [6]
reduces the size of a ProbLog program while maintaining probabilities of given
example queries as well as possible. Probabilistic explanation based learning [7]
and probabilistic local pattern mining [8] learn single clauses based on training
examples, which can then be used to reason by analogy, that is, to find similar
examples with high probability. Hybrid ProbLog [9] introduces a novel type of
probabilistic fact where arguments of the fact can be distributed according to
a continuous distribution. DTProbLog [10] is a decision-theoretic extension of
ProbLog that allows one to reason about alternative actions based on a utility
function in a probabilistic context. FOProbLog [11] and aProbLog [12] gener-
alize ProbLog along different lines: FOProbLog replaces Prolog by first order
logic formulae guarded by probabilistic facts, while aProbLog replaces prob-
ability labels by algebraic labels representing for instance costs, distances, or
datastructures.

The publicly available implementation in YAP currently includes parame-
ter learning, both from queries and proofs and from interpretations, Hybrid
ProbLog, and DTProbLog; further modules will be included in the future.

References

[1] De Raedt, L., Kimmig, A., Toivonen, H. (2007). ProbLog: A probabilistic
Prolog and its application in link discovery. In Proceedings of the 20th
International Joint Conference on Artificial Intelligence, pages 2462–2467.

[2] Kimmig, A., Demoen, B., De Raedt, L., Santos Costa, V., Rocha, R. (2011).
On the implementation of the probabilistic logic programming language
ProbLog. Theory and Practice of Logic Programming (TPLP) 11 235–
262.

[3] Fierens, D., Van den Broeck, G., Thon, I., Gutmann, B., De Raedt, L.
(2011). Inference in probabilistic logic programs using weighted CNFs. In
Proceedings of the 27th Conference on Uncertainty in Artificial Intelligence.
Accepted.

[4] Gutmann, B., Kimmig, A., Kersting, K., De Raedt, L. (2008). Parameter
learning in probabilistic databases: A least squares approach. In Proceed-
ings of the European Conference on Machine Learning. Volume 5211 of
LNCS, pages 473–488.

2



[5] Gutmann, B., Thon, I., De Raedt, L. (2011). Learning the parameters of
probabilistic logic programs from interpretations. In Proceedings of the
European Conference on Machine Learning. Accepted.

[6] De Raedt, L., Kersting, K., Kimmig, A., Revoredo, K., and Toivonen, H.
(2008). Compressing probabilistic Prolog programs. Machine Learning,
70(2-3):151–168.

[7] Kimmig, A., De Raedt, L., and Toivonen, H. (2007). Probabilistic expla-
nation based learning. In Proceedings of the 18th European Conference on
Machine Learning, volume 4701 of LNCS, pages 176–187.

[8] Kimmig, A. and De Raedt, L. (2009). Local query mining in a probabilis-
tic Prolog. In Proceedings of the 21st International Joint Conference on
Artificial Intelligence, pages 1095–1100.

[9] Gutmann, B., Jaeger, M., and De Raedt, L. (2010a). Extending ProbLog
with continuous distributions. In Proceedings of the 20th International
Conference on Inductive Logic Programming, volume 6489 of LNCS.

[10] Van den Broeck, G., Thon, I., van Otterlo, M., and De Raedt, L. (2010).
DTProbLog: A decision-theoretic probabilistic Prolog. In Proceedings of
the 24th AAAI Conference on Artificial Intelligence, pages 1217–1222.

[11] Bruynooghe, M., Mantadelis, T., Kimmig, A., Gutmann, B., Vennekens, J.,
Janssens, G., and De Raedt, L. (2010). ProbLog technology for inference
in a probabilistic first order logic. In Proceedings of the 19th European
Conference on Artificial Intelligence, volume 215 of Frontiers in Artificial
Intelligence and Applications, pages 719–724.

[12] Kimmig, A., Van den Broeck, G., De Raedt, L. (2011). An algebraic Prolog
for reasoning about possible worlds. In AAAI Conference on Artificial
Intelligence. Accepted.

3


