
PEPL: An implementation of FAM for SLPs

Jianzhong Chen[Stephen Muggleton[

James Cussens† Nicos Angelopoulos‡
[Department of Computing, Imperial College, London

†University of York, UK ‡Netherlands Cancer Institute

Pepl, parameter estimation in Prolog, is an implementation of the failure ad-
justed maximisation algorithm (FAM) [4] for Stochastic Logic Programs (Slps)
[6, 7]. SLPs extend logic programming by arithmetic labels on clausal defi-
nitions. They have well characterised log linear semantics and backtracking
strategies [5, 3]. The FAM algorithm was introduced as an extension to the
Expectation-Maximization (EM) algorithm and account for failed derivation
paths in SLPs [4]. It provides a closed-form for computing the parameter weights
within EM’s iterative maximization approach. The algorithm has been shown
to work for normalised SLPs, [4], and is in practice applicable to a wide class
of programs. The failure adjusted aspect of the algorithm has also been incor-
porated in the PRISM system [8].

Pepl is implemented in Prolog and is available as open source. Stochastic
clauses are term expanded to standard Prolog ones. Unique identifiers and a
path argument are added to the transformation of stochastic clauses. These
are used to identify the path of each derivation. In addition failure paths are
also recorded by term expansion techniques. The system provides three ways for
computing the counts needed for the closed-form calculation: exact, sample and
store. The first method is the straight forward approach where all solutions to
the target goal are quarried at each iterative step. Sampling approximates the
counts by only sampling from the target. The expressions associated with the
exact computation can be stored as term structures of arithmetic expression that
can be evaluated at each iteration with fresh instantiations of the labels. This
trades space for speed, making the computation much faster by requiring larger
amounts of memory. A number of examples are provided with the distribution.
These include the blood type example from PRISM, a stochastic context free
grammar and the worked example from [4]. Pepl runs on the current Yap (6.2.0)
and Swi (5.10.3/5.11.22) Prologs.

Pepl have been well applied to a multi-class protein fold prediction prob-
lem [1], in which SLP structure has been learned by ILP system Progol and
SLP parameters have been estimated using Pepl . On the basis of several ex-
periments, it was demonstrated that SLPs and Pepl have advantages for solving
multi-class prediction problems with the learned probabilities. The experiment
results can be found at http://www.doc.ic.ac.uk/~cjz/ProteinSLPs/.

SLPs and Pepl have also been applied in a framework of abductive SLPs [2],

1

which provides possible worlds semantics to SLPs through abduction. Examples
with probability labels are introduced within a standard scientific experimental
setting involving control and treated data. FAM and Pepl are used to learn SLPs
from the probabilistic examples. The results demonstrate that the probabilistic
models learned from probabilistic examples lead to a significant decrease in
error accompanied by improved insight from the learned results compared with
the models learned from non-probabilistic examples. The experiment materials
can be found at http://www.doc.ic.ac.uk/~cjz/AbductiveSLPs/. We also
demonstrate that the parameter estimation results from PRISM also hold for
Pepl in the application.

Availability of Pepl : http://scibsfs.bch.ed.ac.uk/~nicos/sware/slps/
pe

References

[1] J. Chen, L. Kelley, S.H. Muggleton, and M. Sternberg. Protein fold discovery
using Stochastic Logic Programs. In Probabilistic ILP, pages 244–262. 2007.

[2] J. Chen, S.H. Muggleton, and J. Santos. Learning probabilistic logic models
from probabilistic examples. Machine Learning, 73(1):55–85, 2008.

[3] J. Cussens. Stochastic logic programs: Sampling, inference and applications.
In UAI’2000, pages 115–122, 2000.

[4] J. Cussens. Parameter estimation in stochastic logic programs. Machine
Learning, 44(3):245–271, 2001.

[5] James Cussens. Loglinear models for first-order probabilistic reasoning. In
UAI-99, 1999.

[6] Stephen Muggleton. Stochastic logic programs. In L. de Raedt, editor,
Advances in Inductinve Logic Programming, pages 254–264. IOS Press, 1996.

[7] Stephen Muggleton. Semantics and derivations for SLPs. In Workshop on
Fussion of Domain Knowledge with Data for Decision Support, 2000.

[8] T Sato, Y. Kameya, and N.-F. Zhou. Generative modeling with failure in
PRISM. In IJCAI’2005, page 847852, 2005.

2

