BPSolver’s Solutions to the Third ASP
Competition Problems

Neng-Fa Zhou!, Agostino Dovier?, and Yuanlin Zhang®

1 CUNY Brooklyn College & Graduate Center
% Univ. di Udine
3 Texas Tech University

1 Introduction

Continuing with its participation in the second ASP competition, BPSolver par-
ticipated in the third ASP competition. There were two tracks in the third
competition, namely, the System track and the Model & Solve track. While in
the System track, the participating solvers competed on solving benchmark prob-
lems uniformly encoded in the standard ASP, in the Model & Solve track, solvers
were allowed to use their own encodings of the problems. BPSolver participated
in the Model & Solve track with five other solvers including Clasp, AClasp,
EZCSP, IDP, and Fastdownward. BPSolver and Fastdownward were two non-
ASP solvers. BPSolver was completely based on B-Prolog, a standard top-down
goal-driven Prolog system endowed with tabling and CLP(FD). Fastdownward
was a PDDL compiler. Strictly speaking, IDP, a model generation system based
on first-order logic, is not an ASP solver either, but it resembles ASP solvers in
that it uses a bottom-up grounder to transform programs into propositional ones
and uses a SAT solver to compute models. Some of the ASP-based solvers also
used CP solvers for some of the benchmarks. For example, Clasp used Gecode
and EZCSP used B-Prolog for the packing and scheduling benchmarks.

A total number of 34 benchmarks were used in the Model € Solve track. These
problems were classified into four categories: P problems (7), NP problems (19),
beyond NP problems (2), and optimization problems (6). The classification of
some of the problems was debatable. For example, the Stable Marriage prob-
lem was classified as a P problem, but the preferences given in the problem
instances were partially ordered, which made it impossible to use the famous
Gale and Shapley algorithm [2]. Also, the Hanoi Tower problem was classified
as an NP problem, but our dynamic programming solution clearly demonstrated
the polynomial complexity of the problem in the number of moves.

BPSolver took the second place, preceded by Clasp, in the overall ranking.
Another solver from Potsdam, AClasp, placed the third, followed by EZCSP.
The solver Fastdownward, which only participated in the planning benchmarks,
ranked last. If the solvers were ranked on the total number of benchmarks won,
Clasp would remain at the top with 18 wins and BPSolver would still take the
second place with 14 wins.

Except for four problems (Company Control, Grammar, Labyrinth, and To-
mography) that were solved using only plain Prolog, all the BPSolver’s solu-

Table 1. Benchmarks won by BPSolver

Score Benchmark Used Feature
100 Tangram™* CLP(FD)
100 Magic Square Sets CLP(FD)
100 Hydraulic Planning* Tabling
100 Hydraulic Leaking Tabling
097 |Weight-Assignment Tree| CLP(FD)
097 Knight Tour* CLP(FD)
096 Grammar-Based IE Prolog
094 Hanoi Tower** Tabling
093 Airport Pickup Tabling
092 | Disjunctive Scheduling CLP(FD)
090 Reachability Tabling
072 Labyrinth Prolog
039 Tomography Prolog
037 Maximal Clique CLP(FD)

tions used either CLP(FD) or tabling. Most of the high-performing CLP(FD)
programs used global constraints including all distinct, element, circuit,
cumulative, and path_from_to. Mode-directed tabling demonstrated a strong
performance in the competition. It not only helped easily solve the path-finding
problems such as Airport-Pickup, Hydraulic Planning, and Hydraulic Leaking
problems, but also helped provide elegant and efficient dynamic programming
solutions to the Sokoban and Hanoi Tower problems for which neither tabling nor
CLP(FD) had been considered suitable. The BPSolver team managed to com-
plete at least one solution for each of the benchmarks. In addition to CLP(FD)
and tabling, this achievement is also attributed to B-Prolog’s foreach and list-
comprehension constructs, which made concise encodings of many problems pos-
sible.

This article aims to present the main ideas of BPSolver’s winning and hopeful
solutions. The limit of space does not permit inclusion of the problem descrip-
tions and the complete solutions. The interested reader is referred to the Web
site www.mat .unical.it/aspcomp2011/ for the problem descriptions, and www.
sci.brooklyn.cuny.edu/~zhou/aspll/ or www.probp.com/aspll/ for the BP-
Solver’s complete solutions. An overview of the language features of B-Prolog
used in the solutions can be found in [7].

2 The Winning Solutions

Table 1 gives the benchmarks (ordered by score) that were won by BPSolver.
The benchmarks marked with * were won with a tie by more than one solver.
Our solution to the Hanoi Tower problem was submitted a few hours after the
due time due to a misunderstanding of the time zone.'

Three of the benchmarks were won by BPSolver with plain Prolog only. The
Grammar-Based-1E program is a parser in Prolog for parsing Web documents.
Although BPSolver’s win of this benchmark was expected, the competition result

! The Model & Solve competition took more than two months than initially planned
to complete and the organizers kindly forgave the tardiness of the submission.

showed that Clasp, which earned 80 points, was close as a parsing tool for large
documents. The Labyrinth program solves the puzzle as a state-space search
problem with hill-climbing and randomization. BPSolver actually solved 2 fewer
instances than Clasp (12 vs 14) but it got a higher score because it was much
faster than Clasp on the solved instances. The Tomography program solves the
network covering problem by selecting a subset of nodes that has the largest
coverage. This strategy is programmed into the BPSolver solution, and would
be hard to express as a labeling strategy for CP and SAT solvers.

Five benchmarks were won by BPSolver with tabling. The Reachability pro-
gram tests if a given node is reachable from a start node in a given directed
graph. The BPSolver’s solution is as follows:

:—table reach/1.

reach(X) :-
start (X) .

reach(Y) :-
reach(X),
edge(X,Y).

This problem is not trivial since the tested graphs were very large.

The Hydraulic Planning and Hydraulic Leaking are two path-finding prob-
lems. Given a graph, the Planning problem is to find a shortest sequential plan
to pressurize a given set of jet nodes by connecting them to some full tank nodes.
The Leaking problem is to find a shortest plan among those using the least num-
ber of leaking valves. BPSolver’s solutions to these two problems are very short,
thanks to mode-directed tabling in B-Prolog. The following shows our solution
to the Leaking problem.

:-table pressurize(+,-,min).
pressurize(Node,Plan, (Leaks,Len)): -
full (Node),!, Plan=[],Leaks=0,Len=0.
pressurize (Node, [Valve|Plan], (Leaks,Len)) :-
link(AnotherNode,Node,Valve),
\+ stuck(Valve),
pressurize(AnotherNode,Plan, (Leaksl,Lenl)),
Len is Lenil+1,
(leaking(Valve)->
Leaks is Leaks1+1
Leaks is Leaksl
).

For each plan, two attribute values are computed: Leaks is the number of leaking
valves in the plan and Len is the length of the plan. Because only one argument
can be optimized in B-Prolog, this program minimizes the compound argument
(Leaks,Len).

The Airport Pickup problem is another path-finding problem for which tabling
seems more suitable than ASP. The problem is to find a plan for a set of vehicles

to move passengers between two airports in a city. Of course, a vehicle cannot
move if the gas tank is empty. The most important planning task is to move a
vehicle from one location to another. This task is described easily as a tabled
predicate that finds a path that yields the maximal gas level in the vehicle.

BPSolver’s solution to the 4-peg Hanoi Tower problem was an exciting one
because it resulted from several failed attempts to use CLP(FD) and planning
languages for the problem. Given two snapshots from the sequence generated by
the Frame-Stewart algorithm [6], the problem is to find a sequence of moves to
transform one state to the other. The solution, part of which shown below, is
quite simple.

:-table pland(+,+,+,-,min).
plan4 (N, _CState,_GState,Plan,Len):-N=:=0,!,Plan=[],Len=0.
plan4 (N,CState,GState,Plan,Len) : -
reduce_prob(N,CState,GState,CStatel,GStatel),!,
N1 is N-1,
plan4 (N1,CStatel,GStatel,Plan,Len).
plan4 (N,CState,GState,Plan,Len) : -
partition_disks(N,CState,GState,ItState,Mid,Peg),
remove_larger_disks(CState,Mid,CStatel),
plan4 (Mid,CStatel,ItState,Planl,Lenl), % sub-probl
remove_smaller_or_equal_disks(CState,Mid,CState2),
remove_smaller_or_equal_disks(GState,Mid,GState2),
N1 is N-Mid,
plan3(N1,CState2,GState2,Peg,Plan2,Len2), % sub-prob2
remove_larger_disks(GState,Mid,GStatel),
plan4d (Mid,ItState,GStatel,Plan3,len3), % sub-prob3
append (Planl,Plan2,Plan3,Plan),
Len is Lenl+Len2+Len3.

The subgoal plan4 (N,CState,GState,Plan,Len) searches for a shortest plan
to transform the current state CState to the goal state GState, where N is the
number of disks in the problem. If N=0, the problem is solved. Otherwise, if the
largest disk is in its goal position, the problem is reduced by removing the disk.
If the largest disk is not in its final position, an intermediate state is generated
such that the smallest Mid disks form a tower on Peg and the larger disks remain
as in CState. The problem is then divided into three sub-problems: (1) build
a tower of the smallest Mid disks on Peg; (2) move the disks larger than Mid
to their final positions without using Peg; and (3) move the smallest Mid disks
from the intermediate state to the goal state. Since the partition number Mid
is known [5] and the peg on which the tower of the smallest Mid disks is to be
built can be determined easily, the program involves no guessing and hence takes
polynomial time.

Six benchmarks were won by BPSolver with CLP(FD). The Tangram is an
old Chinese puzzle whose objective is to build a shape with seven pieces such
that no two pieces overlap. Only 13 convex shapes can be built from the pieces.

As the search space is small, all the participated solvers got 100 in this bench-
mark. The Weight-Assignment Tree problem was inspired by query optimization
in Database. Given a set of nodes, the objective of the problem is to build a tree
that satisfies certain constraints. The element constraint is used in the solu-
tion for accessing elements of a collection with variable indices. The other four
benchmarks (Magic Square, Knight Tour, Disjunctive Scheduling, and Maximal
Clique) won by BPSolver all have well-known CSP encodings. The foreach and
list-comprehension constructs of B-Prolog greatly facilitate the description of
them. For example, the following defines semi and normal magic sets:

semi (Board,N,Magic) : -
foreach(I in 1..N, sum([Board[I,J] : J in 1..N])#=Magic),
foreach(J in 1..N, sum([Board[I,J] : I in 1..N])#=Magic).

normal (Board,N,Magic) : -
semi(Board,N,Magic),
sum([Board[I,I] : I in 1..N]) #= Magic,
sum([Board[I,N-I+1] : I in 1..N]) #= Magic.

They would require five times as much code if only recursion were allowed.

3 Hopeful Solutions

Many of BPSolver’s solutions have rooms for further improvement. Several so-
lutions could have won had we put little further efforts into them. We show two
such solutions.

The first one is the graph coloring problem. The BPSolver solution ranked
last with only 15 points among the five participated solvers. The BPSolver so-
lution uses the normal model in which a domain variable is used for each vertex
in the given undirected graph and the domain is 0..K — 1, where K is the num-
ber of available colors. Instead of directly posting the constraint C; # C; for
each pair of adjacent vertices ¢ and 7, the BPSolver solution uses the built-in
post_neqs (L) to post the disequality constraints. This built-in extracts com-
plete subgraphs from the graph and posts an all_distinct constraint for each
complete subgraph. Experiments have shown that post_neqs performs better
than posting the disequality constraints separately.

The BPSolver solution, however, exploits no symmetry in the problem. It
has been found that symmetry-breaking is very effective for graph coloring [3].
To implement the symmetry-breaking method, we extended post_neqgs to let it
return the list of extracted complete subgraphs.? With this built-in, the segment
of the program for posting constraints and labeling variables can be rewritten
into the following:

% create Vars and Negs
post_neqgs (Negs,Cliques),

2 The built-in post_neqgs(L,Cliques) is available in version 7.5#2.

largest_clique(Cliques,LClique),
(labeling(LClique)->labeling_ffc(Vars),!;fail),
% output

The subgoal largest_clique(Cliques,LClique) retrieves from Cliques a largest
clique LClique where all the variables have the same domain, and the subgoal
labeling(LClique) forcibly labels the variables in LClique with integers 0, 1,

.., and m — 1, where m is the size of LClique. While the original BPSolver
solution solved only 3 of the 15 instances under the time limit of 600 seconds,
this improved version with symmetry-breaking solved all the 15 instances easily.
This improved version would have won the benchmark since no solver solved all
the instances in the competition.

The second hopeful solution is the Sokoban Optimization problem. The BP-
Solver solution treats the Sokoban problem as a generalized shortest path prob-
lem. For a state, if it is the goal state in which every box is in a storage location,
it is done. Otherwise, the program chooses an intermediate state and splits the
problem into two subproblems, one transforming the current state to the inter-
mediate one and the other transforming the intermediate one to the goal state.
All the states are tabled so that the same subproblem is solved only once. The
following shows the main predicate of the program:

:-table plan_sokoban(+,+,-,min).
plan_sokoban(_SokobanLoc,BoxLocs,Plan,Len) : -
goal_reached(BoxLocs),!,
Plan=[],Len=0.
plan_sokoban(SokobanLoc,BoxLocs, [push(BoxLoc,Dir,DestLoc) |Plan] ,Len) : -
select (BoxLoc,BoxLocs,BoxLocs1),
neib(PrevNeibLoc,BoxLoc,Dir),
\+ member (PrevNeibLoc,BoxLocs1),
neib(BoxLoc,NextNeibLoc,Dir),
good_dest (NextNeibLoc,BoxLocsl),
reachable_by_sokoban(SokobanLoc,PrevNeibLoc,BoxLocs),
choose_dest (BoxLoc,NextNeibLoc,Dir,DestLoc,NewSokobanLoc,BoxLocs1),
insert_ordered(DestLoc,BoxLocsl,NewBoxLocs),
plan_sokoban (NewSokobanLoc,NewBoxLocs,Plan,Lenl),
Len is Lenil+1.

The subgoal plan_sokoban (SokobanLoc,BoxLocs,Plan,Len) finds a plan Plan
with the minimal length Len for the current state, where SokobanLoc is the
location of the warehouse keeper and BoxLocs is a list of box locations. The
list BoxLocs is sorted in lexicographic order to make tabling more effective.
When the goal has been reached (goal_reached (BoxLocs) succeeds when every
box is in a storage location), an empty plan is returned. Otherwise, the second
rule selects a box location BoxLoc from BoxLocs and a destination location
DestLoc that can be reached from BoxLoc in the direction Dir, and adds the
action push(BoxLoc,Dir,DestLoc) into the plan. A detailed description of the
solution is given in [8].

The BPSolver solution solved 11 of 15 instances and failed to solve the re-
maining four instances due to lack of table space. The winner of this benchmark,

Clasp, solved all the instances. On the solved instances, however, BPSolver was
actually faster than Clasp.

The BPSolver solution basically explores all possible states including dead-
lock states that can never occur in an optimal solution. Domain knowledge can
be used to reduce the search space and filter out deadlock states [4]. We expect
our solution to perform significantly better once domain knowledge is introduced.

4 Observations

The participation of BPSolver in the competition created a great opportunity to
directly compare top-down tabled evaluation with bottom-up evaluation of logic
programs, and CLP(FD) with SAT-based ASP solvers. BPSolver won almost
all the path-finding and reachability-testing benchmarks. These results show
that tabling as implemented in B-Prolog is competitive with the bottom-up
grounders such as Gringo used in Clasp. Currently, the tabling system of B-
Prolog natively supports computation of min and max aggregates. It can be
enhanced with constructs for computing other aggregates such as sum and count.
With these constructs, the Company Control and its related benchmarks can be
described more naturally and solved more efficiently.

In comparison of CLP(FD) with SAT-based ASP solvers, the encodings in
ASP are in general shorter than their counterparts in CLP(FD) thanks in part
to the iterative fixpoint-computing procedure used in the grounder. Neverthe-
less, there are cases where the completion semantics of ASP requires lengthy
descriptions. For example, for the Airport Pickup benchmark, one needs to de-
scribe such constraints as “an empty vehicle cannot drop a passenger” and “a
non-empty vehicle cannot pickup another passenger”. In CLP(FD), single assign-
ment variables make the description of these kinds of constraints unnecessary.
Loop constructs, such as foreach and list comprehension in B-Prolog, signifi-
cantly ease modeling. As modeling languages of constraint satisfaction problems,
CLP(FD) and ASP have differences but they are not important. For planning
problems that do not have simple CSP encodings, however, ASP and dynamic
programming tend to be more suitable than CLP(FD).

As solving tools, CLP(FD) and ASP have important differences. ASP ben-
efits greatly from the SAT-solving techniques such as unit propagation, clause
learning, conflict-directed backtracking, automated labeling heuristics, and ran-
domized restart. An ASP programmer needs to give a declarative description of
the problem and tune the solver on the problem to get the best setting. Tuning
tends to require expertise, energy, and time. CLP(FD), on the other hand, relies
on propagation and search to solve a problem. The system does not learn from
failures during search and only loyally follows the specified strategy to select
variables and values in labeling. For problems that have good global constraints
(e.g., Knight Tour and Disjunctive Scheduling) and clear labeling strategies (e.g.,
Mazimal Clique and Tomography), CLP(FD) does have its advantages over ASP.

BPSolver scored zero in six benchmarks, namely, Partner Units P, Partner
Units NP, Reverse Folding, Strategic Companies, Company Controls Optimize,

and Generalized Slitherlink. The solution to Generalized Slitherlink was disqual-
ified due to a bug in the path_from_to constraint, which was newly introduced
into B-Prolog for the competition. A rerun of the corrected solution showed
that the solution could have won 70 points. Our solution to Partner Units failed
to distinguish between polynomial and NP cases, and the model used was not
the best known in the literature (e.g., [1]). Reverse Folding can be treated as
a path finding problem, and a dynamic programming encoding could perform
better than our CSP encoding. Strategic Companies is intrinsically a satisfiabil-
ity problem, and for such a problem CLP(FD) is hardly competitive with any
decent SAT solvers. This result manifests the need to integrate CLP(FD) with
a SAT solver. As mentioned above, the Company Controls Optimize problem
and its decision problem can benefit from new tabled constructs for computing
aggregates. BPSolver also performed poorly in Stable Marriage, Solitaire, and
Maze Generation. Clasp scored 601 points in these 9 benchmarks, but BPSolver
got only 82 points. Had BPSolver had the same performance as Clasp on these
problems, it would have become No.1 in the overall ranking.

Acknowledgement

We would like to thank the organization committee at the University of Calabria
for organizing the competition, and we especially are thankful to Giovambattista
Tanni, Francesco Ricca, and Francesco Calimeri for patiently answering all our
questions.

References

1. Markus Aschinger, Conrad Drescher, Gerhard Friedrich, Georg Gottlob, Peter Jeav-
ons, Anna Ryabokon, and Evgenij Thorstensen. Optimization methods for the part-
ner units problem. In CPAIOR, pages 4-19, 2011.

2. David Gale and L. S. Shapley. College admissions and the stability of marriage.
American Mathematical Monthly, 69:9-14, 1962.

3. Allen Van Gelder. Another look at graph coloring via propositional satisfiability.
Discrete Applied Mathematics, 156(2):230-243, 2008.

4. Andreas Junghanns and Jonathan Schaeffer. Sokoban: Enhancing general single-
agent search methods using domain knowledge. Artif. Intell., 129(1-2):219-251,
2001.

5. Michael Rand. On the Frame-Stewart algorithm for the Tower of Hanoi. Technical
report, Boston College (https://www2.bc.edu/~grigsbyj/Rand_Final.pdf).

6. B. M. Stewart and J. S. Frame. Problems and solutions: Advanced problems: Solu-
tions: 3918. American Mathematical Monthly, 48:216-219, 1941.

7. Neng-Fa Zhou. The language features and architecture of B-Prolog. TPLP, Special
Issue on Prolog Systems, 2011.

8. Neng-Fa Zhou and Agostino Dovier. A tabled Prolog program for solving Sokoban.
In submitted, 2011.

