
How to Solve it With B-Prolog?
Posterior Participation in the 16th Prolog Programming Contest

Neng-Fa Zhou, Salvador Abreu, and Ulrich Neumerkel

August 9, 2010

The authors participated as a team in the 17th Prolog Programming Contest held with ICLP’2010
in Edinburgh. The contest organizer, Tom Schrijvers, gave our team a special treatment, per-
mitting us to use B-Prolog (the officially supported systems were SWI-Prolog and Yap). We
had never been on a team before, so we felt that we needed to practice as a team. Salvador and
Neng-Fa got the set of problems used for last year’s contest. No one of the team participated
in that contest nor had anyone seen the problems before. There were five problems in the
set. As always the set began with a printing question. There were two dynamic programming
problems and two constraint problems. The printing problem seemed time-consuming, so we
worked on the other four problems. Within a little over one hour, we solved all four problems.
Later Ulrich joined and worked out a program for the printing problem.

We made full use of the new features of B-Prolog: loops for printing and constraint genera-
tion, mode-directed tabling for dynamic programming problems, and CLP(FD) for constraint
problems. The resulting programs are very compact. The top three teams in the 16th contest
each solved four problems within two hours (we salute the teams!). How well would have we
performed had we participated in that contest? You never know, but we could say that the
contest would have been less stressful to our team thanks to the new features of B-Prolog.

In this article we present the programs we wrote during the warm up period. Several minor
improvements were made in the midst of writing of this article. All the programs were tested
with B-Prolog version 7.4. For each problem, we explain the method and the B-Prolog features
used in the solution.

In the real contest, the top two teams including our team each solved two problems within
one hour and a half but our team lost to the winning team by two minutes (we submitted four
solutions). We choose the problems for the 16th contest rather the ones we solved in the real
contest because these problems are simpler and better illustrate the features of B-Prolog.

1 Salute to the Flag (flag.pl)

The Prolog Programming Contest flag grows bigger with every edition. Here are those for the
first, second and third edition:

_ _ _

(_) (_) (_)

<___> <___> <___>

| |_____ | |_____ | |_____

| | | | |) | |)

| | | | | (_____ | | (_____

| | | | | | | | | |)

| |~~~~~ | |~~~~| | | |~~~~| (_____

| | | | | | | | | | |

| | ~~~~~~ | | ~~~~~| |

| | | | | |

| | ~~~~~~

| |

Write a general flag/1 predicate that generates the flag for any edition N on the screen by the
goal ?-flag(N). Do not add extra spaces to the left!

1

Program

flag(N) :-

format(" _~n (_)~n<___>~n"),

NR is 2*N+4,

NC is 5*N+5,

new_array(A,[NR,NC]),

p(A,1,5,N),

foreach(I in 1..NR, (A[I,2] @= ’|’, A[I,4]@= ’|’)),

foreach(I in 1..NR, J in 1..NC,

[Aij], % Aij is local

(Aij @= A[I,J],

(var(Aij) -> write(’ ’) ; write(Aij)),

(J == NC -> nl ; true))).

p(A,I,J,1) :- !,

foreach(C in 0..4, (A[I,J+C]@=’_’, A[I+4,J+C]@=’~’)),

foreach(C in 1..3, A[I+C,J+4]@=’|’).

p(A,I,J,N) :-

foreach(C in 0..4, A[I,J+C]@= ’_’),

foreach(C in 0..3, A[I+4,J+C]@= ’~’),

A[I+1,J+5]@=’)’,

A[I+2,J+4]@=’(’,

A[I+3,J+4]@=’|’,

A[I+4,J+4]@=’|’,

A[I+5,J+4]@=’|’,

A[I+6,J+4]@=’~’,

In is I + 2, Jn is J + 5,

Nn is N - 1,

p(A,In,Jn,Nn).

Explanation

The call new array(A,[NR,NC]) creates a two dimensional array of dimension NR by NC, where
NR indicates the number of rows and NC the number of columns. When an array is created, all
the elements are initialized to be different variables. In B-Prolog, a term like A[I,J] is interpreted
as an array access if it occurs in an arithmetic expression, in an arithmetic constraint, and as
an argument of a call to ’@=’/2. For example, the call A[I,4] @= ’|’ unifies the element of
the array at <I,4> with the atom ’|’.

The foreach loop construct is very useful for describing loops. In general, a foreach call
takes the following form:

foreach(E1 in D1, . . ., En in Dn, LocalV ars,Goal)

where each “Ei in Di” is an iterator, LocalV ars (optional) specifies a list of variables in Goal

that are local to each iteration, and Goal is a callable term. The foreach call means that for
each combination of values E1 ∈ D1, . . ., En ∈ Dn, the instance Goal is executed after local
variables are renamed.

This problem is a good example of recursive graphics. The predicate p(A,I,J,N) fills into
the array at <I,J> the shape (a) shown below when N is 1 and the shape (b) when N is greater

2

than 1.

_____ _____

|)

| (

| |

~~~~~ ~~~~|

|

(a) (b)

The last call in flags/1 prints out the shape stored in the array. The variable Aij is declared
local in the loop.

2 Splitting a Train (split.pl)

One large train arrives at the shunting yard, and it needs to be split into two smaller trains.
Trains consist of wagons, and each (type of) wagon has an identifier (something ground in
Prolog). The three trains - the large one and the two smaller ones - are specified as a sequence
of such identifiers (in Prolog, these will be lists of the identifiers). We are lucky: the large train
has all the wagons to make the smaller trains, and in the correct order. So it is only a matter
of deciding for each wagon to which track it goes, and we are done. This involves changing
the track setting and decoupling (for the large train) and coupling (for the smaller trains), and
since this takes a lot of time, we want to minimize that. Just one example: suppose there are
five types of wagons (i, c, l, f and p), the large train is represented by [i,i,c,l,c,f,p,p]

and the two smaller trains are [i,c,l,p] and [i,c,f,p] respectively, then it is easy to split
the larger one into the two smaller ones by a split represented as [1,2,1,1,2,2,1,2] which
means that the first wagon i goes to the first smaller train, the second wagon i goes to the
second smaller train, the third wagon c goes to the first smaller train etc. But another split
is [1,2,1,1,2,2,2,1] which has one less track change (+ the (de)coupling) so it is a better
split.

Write a split/4 predicate whose queries look like

?- split(Large,Small1,Small2,How).

where Large represents a large train, Small1 and Small2 represent the smaller trains, and How

is free. The predicate must unify How with a best split.

Program

split(L,S1,S2,H) :- split(L,S1,S2,0,H,_).

:- table split(+,+,+,+,-,min).

split([],[],[],_,[],0).

split([X|Xs],[X|S1],S2,PrevT,[1|How],Cs) :-

split(Xs,S1,S2,1,How,Cs1),

(PrevT == 1 -> Cs = Cs1 ; Cs is Cs1 + 1).

split([X|Xs],S1,[X|S2],PrevT,[2|How],Cs) :-

split(Xs,S1,S2,2,How,Cs1),

(PrevT == 2 -> Cs = Cs1 ; Cs is Cs1 + 1).

3



Explanation

This is a dynamic programming problem. For each wagon, we add it into either the first smaller
train or the second smaller train. The call split(L,S1,S2,PrevT,H,Cs) binds H to a list that
tells how the list L is split into two smaller lists S1 and S2, where PrevT indicates the train for
the previous wagon (0 in the beginning) and Cs is the number of train changes.

Tabling is used in the solution. In a traditional tabling system, all the arguments of a
tabled call are used in variant checking and all answers are tabled for a tabled predicate.
Mode-directed tabling amounts to using table modes to control what arguments are used in
variant checking of calls and how answers are tabled. In general, a table mode declaration
takes the form

:-table p(M1,...,Mn):C.

where p/n is a predicate symbol, C (called a cardinality limit) is an integer which limits the
number of answers to be tabled, and each Mi (i=1,...,n) is a mode, which can be min, max,
+ (input), or - (output). An argument with the mode min or max is assumed to be output.
The system uses only input arguments in variant checking, disregarding all output arguments.
After an answer is produced, the system tables it unconditionally if the cardinality limit is
not reached yet. When the cardinality limit has been reached, however, the system tables the
answer only if it is better than some existing answer in terms of the argument with the min or
max mode (only one argument can be optimized).

The table mode split(+,+,+,+,-,min) instructs the system to table only the answer
with the minimum number train changes for each given tuple of input arguments (the default
cardinality limit is one). We can also understand mode-directed tabling model-theoretically.
We can imagine that split/6 is a big relation indexed on the input arguments that contains
all the true facts of split/6 in the Herbrand base. In this example, the relation is finite but
in general such a relation can be infinite. For each call to split/6 with a given tuple of input
arguments, only the answer with the minimum number of switches is selected.

3 Panoz (panoz.pl)

Manhattan has several outlets of the famous Belgian bakery Panoz. During an experiment
with a new kind of chocolate pastry, the old bakery has exploded. A new bakery will be
built, somewhere in Manhattan, and this occasion is used to optimize the distribution of all
the goodies. Clearly Panoz wants the location in Manhattan which minimizes the maximal
(Manhattan) distance from the bakery to any outlet.

Write a predicate panoz/2 whose queries look like ?- panoz(Outlets,Sol). where Sol is
the location of the new bakery. The outlet coordinates Outlets are given as a list of tuples,
e.g. [(0,1),(0,2),(4,0),(4,3)]. Here is a typical query and its answer:

?- panoz([(0,1),(0,2),(4,0),(4,3)],Sol).

Sol = (2,2)

Of course, Sol = (2,1) would also have been a good solution.

4



Program

panoz(Ps, Sol) :-

Xs @= [X : (X,_) in Ps],

Ys @= [Y : (_,Y) in Ps],

X :: min(Xs)..max(Xs),

Y :: min(Ys)..max(Ys),

Sol = (X,Y),

Ds @= [max(X1-X,X-X1)+max(Y1-Y,Y-Y1) : (X1,Y1) in Ps],

minof(labeling([X,Y]), max(Ds)).

Explanation

Our solution treats the problem as a constraint optimization problem. It uses list comprehen-
sions. The list comprehension

[X : (X,_) in Ps]

retrieves the x-coordinates from the list of xy-coordinates Ps. In general, a list comprehension
takes the form:

[T : E1 in D1, . . ., En in Dn, LocalV ars,Goal]

where LocalV ars (optional) specifies a list of local variables, Goal (optional) is a callable
term. The construct means that for each combination of values E1 ∈ D1, . . ., En ∈ Dn, if the
instance of Goal, after the local variables being renamed, is true, then T is added into the list.
Syntactically, the first element of a list comprehension takes the special form of “T : (E in D)”.
A list of this form is interpreted as a list comprehension if it occurs as an argument of a call
to ’@=’/2 or in an aggregate arithmetic constraint.

Two domain variables, X and Y, are used to indicate the coordinates of the location to be
computed. Note that the same variable names are used in the list comprehensions, but this
causes no problem because the variables X and Y in the list comprehensions are local.

The third list comprehension (second line from bottom) binds Ds to a list of distances
between <X,Y> and the points in Ps. The call minof(labeling([X,Y]), max(Ds)) labels X

and Y such that the maximum distance is minimized.

4 Three on the Circumference (circ.pl)

Given an undirected tree (specified as a list of edge/2 terms), produce a set of three nodes
which determine the circumference of the tree. The circumference of a tree is the maximal sum
of the distances between three different nodes A,B,C of the tree, that is the sum of the distance
from A to B, B to C and C to A - along the edges of the tree of course, where each edge has
length 1.

Below are two trees with corresponding queries and answers.

5



?- circ([edge(a,b), edge(b,c), edge(b,e), edge(c,d)], Three, Len).

Len = 8

Three = [a,d,e]

?- circ([edge(a,b), edge(a,h), edge(a,i), edge(b,c), edge(b,g),

edge(i,k), edge(c,d), edge(c,e), edge(c,f), edge(k,l), edge(k,m)],

Three, Len).

Len = 14

Three = [d,e,l]

These are of course not the only valid solutions.

Program

circ(Es, Three, Len) :-

foreach(edge(A,B) in Es, (assert(arc(A,B)), assert(arc(B,A)))),

setof(A,B^arc(A,B),Ns),

L @= [three(Dist,A,B,C) : A in Ns, B in Ns, C in Ns,

[Dist], % Dist is local

(A@<B,B@<C,circ(A,B,C,Dist))],

sort(L, L1),

last(L1, three(Len,A,B,C)), Three=[A,B,C],

abolish_all,

initialize_table.

circ(A, B, C, Dist) :-

path(A,B,Dab), path(A,C,Dac), path(B,C,Dbc),

Dist is Dab+Dac+Dbc.

:- table path(+, +, min).

path(A,B,1) :- arc(A,B).

path(A,B,Dist) :-

arc(A,C),

path(C,B,Dist1),

Dist is Dist1+1.

Explanation

For a given set of edges Es, the foreach call in circ/3 asserts a relation arc/2 into the
database. It basically converts the given undirected graph into a directed one. The call setof
collects the nodes in the tree as a list into Ns. The list comprehension constructs a list of terms
three(Dist,A,B,C) into L by calling circ(A,B,C,Dist) for each triplet of different nodes A,
B, and C, where A @< B, B @< C, and Dist is the sum of the distances of the three nodes. The
list L is sorted into L1 by the distance and the last triplet in the sorted list is returned as an
answer. In the end of circ/3, the call abolish all removes the asserted relation arc/2 from
the database and the call initialize table cleans up the table area. This post-processing is
needed because a program may be queried several times after it is loaded and for a different
query a different relation arc needs to be asserted and a different set of answers needs to be
tabled.

6



The predicate path/3 defines the transitive closure of the directed graph. The table mode
requires that for each two given nodes only a shortest path is tabled.

5 Queens, Bishops and Rooks (bishop.pl)

You know the N -queens problem: put N queens on an N ×N board so that no queen attacks
any other queen. It is clear that when you have a solution to the N -queens problem, and you
replace all queens by rooks, you have a solution to the N -rooks problem. And equally clear
is that if you replace all queens in an N -queens solution by bishops, you get a solution to the
N -bishops problem. Even better: if in an N -queens solution you replace every queen by either
a rook or a bishop, you get a solution to the N -rooks/bishops problem. Indeed, if you replace
I queens by bishops and J queens by rooks, you have an (I, J)-solution (of course, I+J = N).
In some (I, J)-solutions, it is possible to add extra bishops, so that no piece attacks any other
piece. Obviously, this is never possible in a (0, N)-solution. But in a (3, 1)-solution, it is:

There is even room for one more bishop! For a given N , what is the maximal J so that an
(N−J, J)-solution can be extended with at least one extra bishop? Write a predicate bishop/2
which has as input the N and which unifies the second argument with this maximal J . E.g.,

?- bishop(4,N).

N = 2.

Program

bishop(N, NR) :-

N>1,

NR0 is N-1,

bishop1(2, NR0, NR, N).

bishop1(NB, NR0, NR, N) :-

bishop(NR0,NB,N), !, NR=NR0.

bishop1(NB, NR0, NR, N) :-

NR1 is NR0-1,

NB1 is NB+1,

bishop1(NB1, NR1, NR, N).

7



bishop(NR, NB, N) :-

length(Rs, NR),

length(Bs, NB),

Rs :: 0..N*N-1,

Bs :: 0..N*N-1,

foreach(I in 1..NR-1, Rs[I] #< Rs[I+1]), % symmetry breaking

foreach(I in 1..NB-1, Bs[I] #< Bs[I+1]),

%

foreach(I in 1..NR, J in I+1..NR,

[R1,R2], % local vars

(R1@=Rs[I], R2@=Rs[J], rr(R1,R2,N) )),

foreach(I in 1..NB, J in I+1..NB,

[B1,B2], % local vars

(B1@=Bs[I], B2@=Bs[J], bb(B1,B2,N) )),

foreach(R in Rs, B in Bs, rb(R,B,N)),

%

append(Rs, Bs, Ps),

labeling_ff(Ps).

rr(R1, R2, N) :-

R1//N #\= R2//N, R1 mod N #\= R2 mod N.

bb(B1, B2, N) :-

X1#=B1//N, X2#=B2//N, Y1#=B1 mod N, Y2#=B2 mod N,

abs(X1-X2) #\= abs(Y1-Y2).

rb(R, B, N) :-

R//N #\= B//N,

R mod N #\= B mod N,

X1#=B//N, X2#=R//N, Y1#=B mod N, Y2#=R mod N,

abs(X1-X2) #\= abs(Y1-Y2).

Explanation

For a given size N, we begin trying to find a configuration for N-1 rooks and 2 bishops. If there
is no configuration, we decrement the number of rooks by one and increment the number of
bishops by one. We continue this until we find a configuration. The number of rooks in the
configuration is the number to be returned.

Let NR be the number of rooks and NB the number of bishops. To find a configuration for
these pieces, we create a list of NR variables Rs and a list of NB variables Bs. The domain of each
variable is from 0 through N*N-1, where N is the size of the board. For each I, the constraints
Rs[I] < Rs[I+1] and Bs[I] < Bs[I+1] are generated to break symmetry. Note that in an
arithmetic constraint, Rs[I] denotes the Ith element of Rs, counting from 1. For the array
access notation A[I], while it takes constant time to access the Ith element if A is a structure, it
takes linear time when A is a list. To achieve constant-time access, we should convert lists into
structures. Nevertheless, in CLP(FD) programs where constraint solving normally dominates
over constraint generation, such an effort may not worth it.

The constraint rr(R1,R2,N) ensures that the two rooks R1 and R2 do not attack each

8



other (the constraint R1//N #\= R2//N ensures that the rows are different and the constraint
R1 mod N #\= R2 mod N ensures that the columns are different), the constraint bb(B1,B2,N)
ensures that the two bishops B1 and B2 do not attack each other, and the constraint rb(R,B,N)
ensures that rook R and bishop B do not attack each other. The foreach construct is used to
generate the constraints, and the built-in labeling ff is used to label the variables using the
so called first-fail strategy.

6 Final Remarks

Like many other languages, Prolog is evolving. New features such as coroutining, attributed
variables, constraints, tabling, and loop constructs are being added into Prolog. Unfortunately,
a lot of people outside the logic programming community still see Prolog as the old language of
three decades ago. The solutions we presented in this article clearly demonstrate the power of
some of B-Prolog’s new features: arrays and loops are useful for the printing problem; mode-
directed tabling is elegant for the dynamic programming problems; CLP(FD) with loops is
powerful for the constraint problems; and list comprehension is useful for constructing lists
in two of the programs. It’s hoped that these new useful features will be introduced into
other Prolog systems, especially the systems that will be officially supported for future Prolog
programming contests. The Prolog programming contest is a very nice thing to have, but to
demonstrate the power and beauty of the Prolog language, we also have to go beyond the
community. For example, we could form Prolog teams to compete in the functional program-
ming contest and we also could persuade the ACM programming contest to allow Prolog to
participate.

Acknowledgement

The set of problems for the programming contest, available at

http://people.cs.kuleuven.be/~tom.schrijvers/PPC16/probs.pdf

was made by Bart Demoen and Tom Schrijvers. Thanks to Tom Schrijvers for testing the
solutions and giving us feedback.

9


