
Teyjus: A λProlog Implementation

The name Teyjus stands ambiguously for a project and a family of systems that are about
providing an efficient and robust implementation of the language λProlog. As a project,
Teyjus has spanned a period of over fifteen years, involving people from Duke University,
SUNY Buffalo, the University of Chicago and the University of Minnesota. As a system,
Teyjus has seen two incarnations. Its first version, released in mid-1999, is characterized
by a complete support for the operation of higher-order unification. Its second version,
released in April 2008, is oriented around a special form of higher-order unification known
as pattern unification. The new version also includes modularity notions coupled with a
complete form of separate compilation.

The work on Teyjus fits into a larger research theme for the group at the University of
Minnesota: developing logics and systems for specifying, prototyping and reasoning about
computations. In addition to Teyjus, the group has recently played a role in developing
systems such as Bedwyr and Abella that can be used to reason about specifications written
in a λProlog-like language. Some of this work represents an ongoing collaboration with the
Parsifal group at INRIA, Saclay under the aegis of the SLIMMER project. We limit our
attention here to the Teyjus system that concerns only the specification and prototyping
aspects. A recent article in the newsletter on the Abella system has discussed the reasoning
focus and the group members can also be contacted directly for more details about this
direction.

The Language λProlog. Dale Miller and Gopalan Nadathur led an effort in the late
1980s to provide a broad proof theoretic foundation for logic programming languages. This
effort resulted in the identification of the intuitionistic theory of higher-order hereditary
Harrop formulas upon which λProlog is based. This class of formulas enriches that of Horn
clauses—the logical basis of Prolog—with the possibilities of quantifying over function and
(certain occurrences of) predicate variables, of explicitly representing binding in terms and
of using a fuller complement of connectives and quantifiers. By systematically exploiting the
new features in the underlying logic, λProlog provides support at the programming level for
capabilities such as higher-order programming, scoping over names and procedures, modular
programming, abstract data types and the use of λ-terms as data structures.

A central contribution of λProlog is that it has revealed a dimension to higher-order
capabilities in programming that was not known before and that is not easily replicated in
contexts different from logic programming. These capabilities derive from the availability
of λ-terms for representing objects and of a suitable set of primitives for manipulating such
representations. Using these features, λProlog pioneered support for the notion of higher-
order abstract syntax, a profitable way to view the syntax of objects whose structures involve
binding. Several detailed studies have, in fact, indicated the utility of this language in
building symbolic systems that manipulate objects such as formulas, programs, proofs and
types. Space limitations prevent us from discussing these metalanguage capabilities in any
detail here. However, the Teyjus distribution contains several example programs illustrating
such possibilities and also provides pointers to papers that discuss the conceptual aspects

1



of the code that is presented.

The λProlog Abstract Machine. The Teyjus implementation is built around a virtual
machine that is capable of realizing the operations that arise in typical λProlog programs
efficiently. The well-known Warren Abstract Machine (WAM) provides a structure for treat-
ing the unification and backtracking operations that are central to the evaluation machinery
of this language. However, there are additional features that must also be accommodated:

• The language allows the name and code space to be dynamically altered and this has
to be reflected into unification and procedure invocation.

• Representations have to be devised for λ-terms that allow them to be used efficiently
in encoding objects.

• A richer form of unification, known as higher-order unification, has to be supported.

• Types impact on the dynamic behaviour of programs and a method has to be found
to reduce their run-time footprint while still satisfying this role.

The first version of Teyjus was based on an extension to the WAM designed in the 1990s
that addressed all these issues. Much was learned from experimenting with that system
that has led to a substantial redesign of the virtual machine. The most significant change
was a decision to orient computation around a deterministic and terminating fragment of
higher-order unification known as pattern unification. This choice considerably simplifies
the internal structure of the machine and its instruction set, and also obviates almost all
runtime computations over types. These aspects are explored in detail in the (forthcoming)
doctoral thesis of Xiaochu Qi. The machine designed by Xiaochu also incorporates the
insights gained from recent studies by the group into the practical consequences of choices
in λ-term representation.

The Structure of the Teyjus System. The actual implementation uses an emulator for
the virtual machine. Thus, there are two main components to the system: a compiler and
an emulator. The function of the compiler is to process a given module of λProlog code,
to certify its internal consistency and to ensure that it satisfies a promise determined by
an associated signature and, finally, to translate it into a byte-code form. This byte-code
form consists of a “header” part containing constant and type names and other related data
structures and a sequence of instructions that can be run on the abstract machine once it
has understood the header information. One part of the emulator is a “loader” that can
read in such byte-code files and put the emulator in a state where it is ready to respond
to user queries. The other part of the emulator is, of course, a byte-code interpreter that
steps through instructions in the manner called for by the user input.

The λProlog language contains also modularity features that allow large systems to be
constructed by composing smaller modules. In contrast to its first version, the new Teyjus
system provides complete support for separate compilation relative to this language. What
this means is that the compiler must process each module separately from any other and

2



must generate code in such a way that it can be later combined with the compiled forms
of other relevant modules to build the image that is eventually to be run. This extra
“composition” information that is generated by the compiler is actually another part of the
header information in byte-code files. The task of composing these files is taken up by a
third component of the Teyjus system, the linker.

The new Teyjus system has been implemented via a mix of OCaml and C code. The
desire was to benefit from the high-level and declarative aspects of a functional language
wherever possible and to use C only where proximity to the underlying machine is needed
for efficiency, an attribute that applies mainly to the emulator. Portability has also been
a major design consideration. The system runs on varied 32 and 64 bit architectures and
under all the major operating systems.

Ongoing Research and Development. The group is involved in several software projects
related to the Teyjus system. One important, missing component is a garbage collection
scheme. This is currently being developed. Another interesting direction of inquiry is
the potential for the Teyjus virtual machine to serve as a general compilation target for
higher-order logic based languages. A specific possibility that is being investigated in this
connection is that of compiling logic programming specifications in the Twelf language to a
form that can be run on this machine. Another project that is of interest is that of develop-
ing an interoperability interface between λProlog and C. At the very least, such an interface
will allow for the flexible use of a large variety of C library functions in enhancing the capa-
bilities of the λProlog system. In a longer term, we are interested in closely integrating the
specification and prototyping capabilities that Teyjus provides with the reasoning capabil-
ities of other systems like Abella that the group is now building. Part of the desire here is
to allow for an easy transition between these capabilities that ultimately represent different
uses of the same specifications. In a more ambitious direction there may be benefits to be
derived, for example, from using computations directly as a means for reasoning.

People Involved. The new Teyjus system is the result of a collaboration between Andrew
Gacek, Steven Holte, Gopalan Nadathur, Xiaochu Qi and Zach Snow. Colin DeVilbiss
is currently working on the missing garbage collector. The present effort has benefited
considerably from the earlier version of the system to which contributions were made by
Bharat Jayaraman, Keehang Kwon, Chuck Liang and Dustin Mitchell. Our collaborators
on the SLIMMER project from INRIA, Saclay have also provided valuable input in recent
years; David Baelde and Dale Miller deserve special mention in this regard.

Web Site. The link to the Teyjus web site is http://teyjus.cs.umn.edu/. You may
contact Gopalan Nadathur for any details not found through the web site.

Acknowledgements. Work on the new version of the Teyjus system has been supported
by the National Science Foundation Grant CCF-0429572. This work has relied on ideas
developed earlier based on support from a series of grants also from the National Science
Foundation: Grants CCR-8905825, CCR-9208465, CCR-9596119 and CCR-9803849. Opin-
ions, findings and conclusions or recommendations that are manifest in this material are
those of the project participants and do not necessarily reflect the views of the NSF.

3


